
Example-Based Live Programming for Everyone

Building Language-Agnostic Tools for Live Programming with LSP and GraalVM

Fabio Niephaus
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Patrick Rein
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Jakob Edding
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

jakob.edding@student.hpi.de

Jonas Hering
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

jonas.hering@student.hpi.de

Bastian König
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

bastian.koenig@student.hpi.de

Kolya Opahle
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

kolya.opahle@student.hpi.de

Nico Scordialo
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

nico.scordialo@student.hpi.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

Abstract

Our community has explored various approaches to improve
the programming experience. Although many of them, such
as Example-Based Live Programming (elp), have shown to
be effective, they are still not widespread in conventional
programming environments. A reason for that is the effort
required to provide sophisticated tools that rely on run-time
information. To target multiple language ecosystems, it is
often necessary to implement the same concepts, but for dif-
ferent languages and runtimes. Two emerging technologies
present an opportunity to reduce this effort significantly: the
Language Server Protocol (lsp) and language implementa-
tion frameworks such as GraalVM’s Truffle. In this paper, we
show how an elp system can be built in a language-agnostic
way by leveraging these two technologies. Based on our
approach, we implemented the Babylonian Programming
system, an elp system that has previously only been imple-
mented for exploratory ecosystems. Our system, on the other
hand, brings elp for all languages supported by the GraalVM
to Visual Studio Code (VS Code). Moreover, we outline what
a language-agnostic infrastructure needs to provide and how
the lsp could be extended to support elp also independently

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Onward! ’20, November 18–20, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8178-9/20/11.
https://doi.org/10.1145/3426428.3426919

from programming environments. Further, we demonstrate
how our approach enables the use of elp in the context of
polyglot programming. We illustrate the consequences of
our approach by discussing its advantages and limitations
and by comparing the features of our system to other elp
systems. Moreover, we give an outlook of how tools that rely
on run-time information could be built in the future. This
in turn might motivate future tool builders and researchers
to consider implementing more tools in a language-agnostic
way from the start to make them available to a broader audi-
ence.

CCS Concepts: • Software and its engineering → Inte-

grated and visual development environments; Software
maintenance tools; Runtime environments.

Keywords: Live Programming, Exploratory Programming,
Language Server Protocol, GraalVM, Truffle, Visual Studio
Code

ACM Reference Format:

Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bas-
tian König, Kolya Opahle, Nico Scordialo, and Robert Hirschfeld.
2020. Example-Based Live Programming for Everyone: Building
Language-Agnostic Tools for Live Programming with LSP and
GraalVM. In Proceedings of the 2020 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! ’20), November 18–20, 2020, Virtual,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3426428.3426919

1

https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/3426428.3426919


Onward! ’20, November 18–20, 2020, Virtual, USA F. Niephaus, P. Rein, J. Edding, J. Hering, B. König, K. Opahle, N. Scordialo, and R. Hirschfeld

1 Introduction

Our community has created various approaches to improve
the programming experience through Exploratory and Live
Programming [26], in particular through tools making use
of run-time information such as Whyline or Example-Based
Live Programming (elp) [1, 13]. Nevertheless, many of these
tools are not widespread, in particular not in conventional
programming environments. This is often not the result of a
conceptual limitation, as many of these tools do not depend
on specific programming languages, programming environ-
ments, or execution environments. We argue that part of
the problem is the effort required to provide a tool for dif-
ferent ecosystems, as this means re-implementing the user
interface (ui) of the tool in the corresponding programming
environments and the necessary instrumentation in the cor-
responding execution environments. While some adapta-
tions for specific environments will always be required, the
core mechanisms of a tool may not differ much between
implementations and could be reused.

Two recent trends provide an opportunity that may enable
tool builders to support various environments and languages,
while only implementing the core mechanisms of their tools
once: the Language Server Protocol (lsp) and the Truffle
instrumentation framework. The lsp decouples Integrated
Development Environments (ides) from concrete program-
ming languages, so that programmers are free to choose
what kind of ide they use for writing code in a specific lan-
guage [18]. The Truffle instrumentation framework [30], on
the other hand, enables language-agnostic implementations
of program instrumentation infrastructures. This framework
is part of the Truffle language implementation framework
used to implement all languages for the GraalVM [33]. More
importantly, Truffle already provides an lsp server based on
its instrumentation framework [28].
An example for sophisticated tool support that may be

implemented based on these technologies is elp. elp nar-
rows the gap between static source code and the dynamic
behavior of a program. While programmers write code, an
elp system uses user-provided examples to invoke annotated
functions, and to provide fine-grained, live feedback on the
resulting program behavior. Currently, most existing imple-
mentations of elp systems are based on highly specialized
programming systems and adapted execution environments.
For widespread adoption, however, elp needs to be available
in conventional, general-purpose ides and should work with
unmodified execution environments.
As a result of implementing tools in a language-agnostic

way, programmers can always use their preferred set of tools
to develop in different languages. This makes the program-
ming experience more consistent [20]. Moreover, such tools
can also be used in the context of polyglot programming,
where programmers can build their applications with multi-
ple language. The main premise of polyglot programming

is to allow programmers to use the best language, library,
framework, or tool for the job and thus fosters software reuse.
On the other hand, this also means that they have to deal
with additional cognitive overhead, for example distinguish-
ing between different language semantics. An elp system
can help programmers to better understand such differences
when building polyglot applications.

In this paper, we show how a new infrastructure can pro-
vide a complex programming tool with a live feedback loop
for multiple languages. In particular, we describe and evalu-
ate how an elp system can be built in a language-agnostic
way on top of the lsp and the Truffle instrumentation frame-
work. On the one hand, our approach makes elp usable uni-
formly across languages and development environments. On
the other hand, it also enables elp for polyglot programming,
where programmers not only have to deal with cognitive
challenges of one, but many languages at the same time. To
demonstrate our approach, we implement the Babylonian
Programming system [23, 25], an elp system that has previ-
ously only been implemented for exploratory ecosystems,
on top of Truffle’s lsp implementation and the its extension
for Visual Studio Code (VS Code).

Contributions:

• An approach for extending the Language Server Pro-
tocol with a live feedback loop to support elp systems,

• A language-agnostic implementation strategy for a
Babylonian Programming system, and

• A discussion of to what extent elp can be provided in
a language-agnostic and environment-agnostic way,
based on a prototypical implementation of said ap-
proach and strategy.

In the remainder of this paper, we give a short introduction
to elp and provide an overview of current implementation
strategies to illustrate how these result in specialized imple-
mentations in Section 2. In Section 3, we introduce lsp and
the Truffle instrumentation framework. Based on this, we
present our general approach for a language-agnostic elp im-
plementation in Section 4. In Section 5, we describe technical
details of the implementation. To illustrate the consequences
of our approach, we demonstrate the achieved programming
experience with two walkthroughs in Section 6 and provide
a discussion of the feasibility of providing elp in a language-
agnostic and environment-agnostic way in Section 7. Finally,
we discuss related work in Section 8 and state our conclu-
sions in Section 9.

2 Example-Based Live Programming:

Features and Implementations

To illustrate our approach, we will re-implement an existing
elp tool using a language-agnostic infrastructure. The tool

2



Example-Based Live Programming for Everyone Onward! ’20, November 18–20, 2020, Virtual, USA

to be implemented is called the “Babylonian Programming1
system” [23, 25].

To demonstrate some typical features of elp systems, we
will first provide a short overview of the features of the sys-
tem (see Figure 1). Further, we give an overview of existing
implementations and their implementation approaches to
illustrate the effort currently required to provide elp.

2.1 Features of elp Environments

In the following we will illustrate features of elp systems by
explaining some of the features of the Babylonian Program-
ming system. Most of these features are also found in other
elp systems.
As the name suggests, a central feature of elp systems

is that they allow programmers to express examples and
associate them with executable elements of the program-
ming language (see 2, 6 in Figure 1). In the original Babylo-
nian Programming system, programmers can definemultiple,
named examples for each function or method in JavaScript
(js). These examples might be created ad-hoc by the cur-
rent programmers or might have been created by earlier
programmers and left in the source code for documentation
purposes.

Programmers can then activate examples to get live feed-
back on the program behavior. To get feedback on an expres-
sion, programmers can attach a probe to the expression [16]
(see 4, 7 in Figure 1). The probe will show the results of all
evaluations of the expression during the execution of all acti-
vated examples. Whenever programmers change code or the
examples, the examples are re-executed and the probes are
updated accordingly. Probes can provide feedback on sim-
ple value objects, as well as structured objects. By placing
probes in different modules, programmers can see how the
execution of the example involves other parts of the system.
As functions are seldomly executed in an empty context,

the Babylonian Programming system allows programmers
to specify the context in which the example is to be executed.
One way to specify the context are instance templates which
define instances of classes which can be re-used in examples
(see 1 in Figure 1). Another way to specify the context are
replacements which allow programmers to replace a selected
expression with another expression during the execution
of an example (see 5 in Figure 1). Through replacements
programmers can, for example, replace a query to a database
with a constant expression.

Further, in order to support programmers in checking
their hypothesis about the dynamic behavior of the program,
the Babylonian Programming system allows programmers to

1The name refers to the observation that during the Babylonian period algo-
rithms were already described using examples integrated into the abstract
description of a procedure [12].

express assertions regarding the example executions. Essen-
tially, they are probes with an additional assertion expression
which is evaluated for each recorded value.

Finally, to navigate the underlying trace, the Babylonian
Programming system provides graphical sliders for loops
and function calls (see 3 in Figure 1). Using these, program-
mers can select specific iterations or function calls to limit
the displayed values of probes. To ease the navigation of
source code involved in the example execution, the Babylo-
nian Programming system also grays out code that was not
executed.

2.2 Implementation Strategies of elp Systems

The implementation of an elp system involves the program-
ming environment as well as the run-time instrumentation.
Depending on the extensibility of the programming envi-
ronment and the availability of run-time instrumentation
infrastructure, the elp implementation often results in a
specialized or even completely new environment. In the fol-
lowing, we illustrate the different implementation strategies
and their consequences, for example to which degree they re-
sult in programming environment-specific implementations
or how they influence the development setup.

2.2.1 Programming Environment. On the side of the
programming environment, implementers have to provide
ui components for the features described above and integrate
them with the infrastructure for tracing example executions.

Specialized Source Code Editor. The most common ap-
proach found in the environments listed in Table 1 is to
implement a specialized code editor. While many of them
are based on code editors with basic features, they generally
do not integrate into a larger environment. For example, the
Babylonian Programming implementations and the Seymour
editor are based on commonly used code editors [10, 23, 25].

At the same time, creating a specialized source code editor
gives implementers a lot of freedom to adapt the detailed
user interactions within the editor. For example, the live
literals editor is able to update literals in the source code
to provide feedback and the editor shown in the Inventing
on Principle demonstration is specialized for the domain of
rendering [31, 32].
As these editors have been created for elp, they are op-

timized for the corresponding workflows. Consequently, it
may be difficult to reuse the resulting editors directly in
larger environments which may use the source code editor
to provide a variety of workflows.

Plug-ins. Many contemporary ides already provide
reusable ui components, language-agnostic tooling infras-
tructure, such as generic interfaces for code highlighting or
outlines, and a plug-in system. Some implementations make
use of these to implement elp. For example, the original
example-centric environment was implemented as a plug-in

3



Onward! ’20, November 18–20, 2020, Virtual, USA F. Niephaus, P. Rein, J. Edding, J. Hering, B. König, K. Opahle, N. Scordialo, and R. Hirschfeld

instance template

sliders

probe

replacement

example

probe

example

1

2

3

4

5

6

7

Figure 1. The editor in the Babylonian/JS system showing an active example with the name “Tim” (2) annotated to the method
sayHello() and an active example named “speaker” (6) attached to the function sayLotsOfHello(). The example “Tim” uses the
instance template named “Timmy” (1) to create a receiver for the method call. One probe (4) shows results for both examples.
The other probe (7) shows results for the “speaker” example for a complex object. The replacement (5) substitutes the request
for user action with a fixed value. The sliders (3) allow users to navigate the different calls to sayHello(). For the “speaker”
example the fifth call out of ten is currently selected with the slider, the execution of the “Tim” example only contains one
call. [23, 25]

for Eclipse and the Shiranui approach was implemented as
an Emacs plug-in [1, 7].

Through reusing the existing tooling infrastructure of an
ide, implementers could provide a language-agnostic imple-
mentation of elp. So far, however, the existing implementa-
tions all provide language-specific plug-ins.

Specialized Environment. Another way to implement
elp is to create an environment that provides infrastructure
for run-time feedback. For example, the LightTable environ-
ment provides a ui element called watches, which are similar
to probes [6]. They provide an interface that can then be
implemented for particular languages, for example Clojure
or Python, through plug-ins.

While this approach requires a lot of effort, it provides an
infrastructure for elp that can be reused across languages
supported in that environment.

2.2.2 Instrumentation. One the side of the execution en-
vironment and the language implementation, implementers
have to provide means to trace the example executions. As

we are mostly interested in the user experience for program-
mers working with elp, we only distinguish between imple-
mentation strategies which require programmers to use a
specialized execution environment and approaches which in-
strument the source code before it is passed to the execution
environment.

Modified Execution Environments. Several elp imple-
mentations make use of an execution environment which
is modified to trace the execution. The example-centric ap-
proach used a modified Java Virtual Machine (jvm) which
yields trace information for every executed expression in
combination with on-demand instrumentation [1]. Shiranui
comes with a new, so far limited, programming language
whose interpreter traces the evaluation of all expressions [7].

Using a modified execution environment has several ad-
vantages. First of all, instrumentation can be applied at a
fine-grained level without altering the original control flow.
Second, a virtual machine (vm)-level instrumentation might
decrease the performance impact of tracing. However, using

4



Example-Based Live Programming for Everyone Onward! ’20, November 18–20, 2020, Virtual, USA

a modified execution environment complicates the develop-
ment setup and introduces the risk of relying on outdated or
inconsistent behavior of the language implementation.

Instrumentation of Source Code. An approach which
does not require an instrumented execution environment is
to use an extended compilation process which introduces
the instrumentation before the execution.
For example, both existing implementations of Babylo-

nian Programming systems represent probes as comments
in source code. During the compilation process, these spe-
cial comments are used to instrument expressions through
rewriting source code, for example by using the Babel frame-
work in Babylonian/JS [23, 25]. LightTable stores watched
ranges of source code in external structures and also adds
instrumentation code before the evaluation [6].

The major advantage of this approach is that users do not
have to switch to a specialized execution environment. This
in turn simplifies the development setup and reduces the
risk of relying on inconsistent language behavior between
execution environments. At the same time, this approach
can be difficult to implement, as instrumenting arbitrary
expressions through source code transformations correctly
is challenging. Further, tracing without vm-level support
might increase the time to execute an example.

In the live literals editor, probes are ordinary function calls
and thus programmers can manually instrument source code.
While this circumvents the problem of correct automatic
instrumentation, it also intertwines instrumentation code
with program code.

3 Technology Background:

Language-Agnostic Infrastructure

In this section, we introduce the technologies that enable a
more generic implementation of the Babylonian Program-
ming system that is independent from the programming
language and programming environment.

3.1 Language Server Protocol

The Language Server Protocol [18] is an actively maintained,
open protocol by Microsoft designed to enhance code edi-
tors and ides with language-specific features such as code
completion, goto definitions, and various code annotations.
It is based on the client-server architecture and uses JSON-
RPC [9] for the communication between a tool and a lan-
guage server. Therefore, it decouples development tools from
programming languages, which in turn allows programmers
to use their preferred set of tools across multiple languages.

3.2 GraalVM and Truffle

GraalVM [33] is a high-performance, polyglot vm based
on the jvm and supports several different language imple-
mentations such as JavaScript, Python, and Smalltalk [19].

The Graal just-in-time compiler is written in Java and de-
signed to run and optimize Abstract Syntax Tree (ast) inter-
preters. These ast interpreters must be implemented in Truf-
fle, GraalVM’s language implementation framework. This
approach makes it straightforward to run polyglot applica-
tions: asts of different languages can bemixed and combined,
which the Graal compiler can then optimize and execute.
Languages can communicate with each other through the
InteropLibrary Application Programming Interface (api),
Truffle’s language interoperability protocol.

Since tooling is essential when it comes to the program-
ming experience, the Truffle framework provides numerous
common development tools, such as profilers and a debug-
ger, for both language implementers and language users.
Most of these tools are built in a language-agnostic way.
For supporting them, language implementers must provide
implementations for both Truffle’s instrumentation and lan-
guage interoperability apis. Based on these apis, a language-
agnostic implementation of the lsp for GraalVM languages
was built [28] and introduced with the release of GraalVM
20.0.0.

4 Approach

The goal of this work is to demonstrate that an elp system
can be built in a language-agnostic way. For this, we lever-
age the lsp and extend it with a live feedback loop. Also, the
approach builds on top of the instrumentation and interoper-
ability apis of a language implementation framework. As a
result, our approach enhances conventional code editors and
ides with elp features independently from the programming
language and thus also enables elp for polyglot program-
ming. In the following, we provide an overview of how this
can be achieved.

Building a Live Feedback Loop on Top of the lsp. The
lsp defines a messaging protocol between a language server
and an lsp client, typically an extension integrated into a
code editor or ide. It has built-in support for notifications
informing the server about common file operations, such
as didOpen, didChange, and didSave. Being able to monitor
source code files for changes is an important precondition for
supporting live programming features. In addition, the lsp
supports other notifications that a server can use to trigger
specific events in a client. The specification allows custom
notification messages that are ignored if not understood by a
client. An lsp client, on the other hand, has access to the code
editor it is integrated into, because the editor is responsible
for creating appropriate ui components for incoming mes-
sages from a language server. Consequently, a live feedback
loop can be integrated into the lsp by introducing appro-
priate messages to request the instrumented execution of
code, for example every time a file is changed, and to display
collected run-time information through the client in code
editors.

5



Onward! ’20, November 18–20, 2020, Virtual, USA F. Niephaus, P. Rein, J. Edding, J. Hering, B. König, K. Opahle, N. Scordialo, and R. Hirschfeld

Table 1. Overview of implementation strategies for programming environments and execution environments for elp.

elp Approach Programming Environment Instrumentation
Example-centric [1] Eclipse plug-in modified, tracing jvm
Live Literals [31] specialized code editor manual instrumentation
Shiranui [7] Emacs plug-in new language, tracing execution environment
Inventing on Principle [32] specialized code editor unknown
Seymour [10] specialized code editor unknown
LightTable [6] complete environment code rewriting
Babylonian/JS [23] specialized code editor code rewriting
Babylonian/S [25] specialized code editor code rewriting
Projection Boxes [15] VCS extension unknown
Brackets live coding [14] Brackets plug-in modified, tracing Node.js

Implementing elp using Truffle. At the core of elp is
the ability to add examples in some form to source code. Such
exemplified codemust be executed by an appropriate runtime
environment. We can implement the execution of example
invocations in a language-agnostic manner, as GraalVM’s in-
teroperability api allows the execution of code from different
languages in a uniform way. Moreover, GraalVM supports a
sophisticated sandboxing mechanism, which is useful when
dealing with intermediate and possibly incorrect versions
of code under development. This mechanism allows us to
set timeouts and various resource restrictions. User-defined
examples can therefore be executed in such sandboxes.

More importantly, it must be possible to collect run-time
information based on injected probes, assertions, and re-
placements to support different features of the Babylonian
Programming system. The Truffle framework allows the im-
plementation of language-agnostic instruments on the ast
level. An advantage of Truffle asts is that they can provide
lots of additional information. Each node, for example, can
provide a source location, which makes it possible to map
from an ast back into source code. Using Truffle’s instrumen-
tation infrastructure, additional code can be executed before
and after ast nodes. This way return values can be captured
on expression level, which enables probing and assertions.
Furthermore, the execution of a node can be avoided by forc-
ing a specific return value within the routine (onEnter())
running before a node is executed. This mechanism can be
used for implementing replacements. The instrumentation
framework is hence suited for collecting run-time informa-
tion required for the Babylonian Programming system.

Sharing Exemplified Code Between Programmers. Ex-
amples are meant to support programmers in writing and
documenting code but are negligible once a program is
shipped. Furthermore, programmers often collaborate in
teams through a version control system. In order to persist
example and probe definitions in the code and share them

with other programmers, we propose to embed these defi-
nitions in code comments. Such comments are often used
for documentation purposes. Examples can also function
as a documentation mechanism, probes and assertions can
highlight important points in a program. Besides, most pro-
gramming languages, version control systems, code editors,
ides, and the lsp are based on files. Therefore, representing
examples and probes as textual comments is more appro-
priate than representing them as an external artifact. Tools
could provide interactive user interfaces to hide and control
our definitions in code comments.

Stakeholders and Responsibilities. To illustrate why
our approach enables the implementation of an elp system
that is agnostic to languages and ides, we describe what
needs to be done to support a new language or development
environment. For this, we make the following assumptions
with regard to the language implementation framework and
the lsp. As a prerequisite, the language framework of the
runtime ecosystem needs to support language-agnostic, in-
strumented execution of source code. Further, the lsp speci-
fication must include an appropriate notification for display-
ing run-time information in the editor. This is required to
make our approach fully environment-agnostic. Otherwise,
it is limited to lsp clients that understand our protocol ex-
tension. For more client-side flexibility, a dedicated message
to explicitly request instrumented execution of code could
be added to the protocol as well. In the case of TruffleLSP,
this means:
To add support for a new language, its implementers

would need to implement both, the instrumentation and
the interoperability protocols of the Truffle framework. If
this is the case, any ide that has an lsp client with support
for the proposed lsp extension would be able to provide our
Babylonian Programming features for that new language.
To add support for a new ide, the maintainers of its lsp

client — usually the maintainers of the ide or of an ide

6



Example-Based Live Programming for Everyone Onward! ’20, November 18–20, 2020, Virtual, USA

extension providing an lsp client — are responsible for im-
plementing support for our proposed lsp extension. The lsp
client must be able to request the execution of exemplified
code from the lsp server and to accept incoming notifica-
tions for displaying run-time information. If this is the case,
the lsp client would support our Babylonian Programming
system for any programming language that implements the
required protocols of the language framework.

5 Implementation

This section describes how we have implemented a Babylo-
nian Programming system based on our approach. We have
extended GraalVM’s TruffleLSP as well as its extension for
VS Code and introduced a lightweight Domain-specific Lan-
guage (dsl) for persisting examples, probes, and assertions.
The code is based on GraalVM 20.0.0 and publicly available
on GitHub2.

Architectural Overview. Figure 2 gives an overview of
the system’s architecture: On the server side, Truffle provides
the instrumentation framework and is used to implement all
GraalVM languages as well as the TruffleLSP integration. To
the latter, we have added a Babylonian instrument, which
is the key component for evaluating and instrumenting ex-
emplified code. On the client side, we are building on top
of the lsp client that comes with GraalVM’s extension for
VS Code.

In addition, Figure 2 depicts how the core feedback loop
functions: 1. When the user opens or changes a file, the client
sends a corresponding event to the TruffleLSP. This compo-
nent then uses our Babylonian instrument for collecting run-
time information. The information is sent via setDecoration
notification messages to the lsp client. Finally, the lsp client
adds code decorations through VS Code’s setDecorations

api call.

Extending the TruffleLSP. TruffleLSP heavily uses Truf-
fle’s instrumentation framework. For example, it comes
with a SourceCodeEvaluator infrastructure which is used
to perform dynamic code coverage analyses. We extended
the SourceCodeEvaluator with the ability to evaluate code
for a given example. For this, we introduced a new
ExecutionEventNodeFactory. Using a SourceSectionFilter,
we define a filter for ast nodes tagged with the StatementTag
to ensure our execution event nodes are only triggered by
statements. In the onReturnValue() hook, we can then access
the results for each statement and accumulate them if needed
for an example, probe, or assertion. If examples are found in
a file, its content is executed with our instrument. During
the execution, TruffleLSP sends corresponding decoration
notifications to the client asynchronously every 500ms until
all example were executed. In case an example needs more
time to run, a special notification is sent to inform the user
2https://github.com/hpi-swa-lab/graal/tree/onward20-paper

Listing 1. Exemplified code using our lightweight DSL.
// <Example :name="hot" inputValue =95 />
function getTemperatureText(inputValue) {
// <Probe :example ="hot" />
return `${inputValue}◦F equals

${toCelsius(inputValue )}◦C`
}
// <Example :name="cold" fahrenheit =32 />
function toCelsius(fahrenheit) {
// <Probe :expression =" fahrenheit - 32" />
// <Assertion :example ="cold" :expected =0 />
return (fahrenheit - 32) * 5/9

}

that the execution of the example is in progress by displaying
an ellipsis as placeholder results. Moreover, if an assertion
or probe contains an expression, it is evaluated in the con-
text of the current execution state similar to interactive code
execution in the console of a debugger. Timeouts and other
run-time errors are propagated to the client, so that users
can see and better understand problems in their code. Since
the TruffleLSP was introduced as a preview with GraalVM
20.0.0, however, it is not fully refined yet. We discuss some
of its current limitations in Section 7.

Extending the GraalVM’s Extension for VS Code. The
key modification to GraalVM’s VS Code extension is to add
support for the newly introduced decoration notifications.
Every time a file is changed, it is sent to the lsp backend
for instrumented execution, which in turn will respond with
appropriate decoration notifications, as explained in the pre-
viously paragraph. The extension distinguishes between ex-
ample, probe, and assertion annotations. Examples are deco-
rated with the return value of the function they are declared
for. Probes are decorated with a string representation of the
value returned as part of the line following the probe defini-
tion. Assertions work in the same way but compare a result
against an expected value. Instead of a string, we use cross
and check marks to encode the results of an assertion.

Our implementation supports multiple examples. To help
programmers identify the right probe values and assertions
for their examples, we prepend each decoration with an
emoji for the corresponding example. Changing the name of
an example also changes the emoji. This ensures the prefixes
of decorations are consistent and short.

A dsl for Persisting Examples. To persist example,
probe, and assertion definitions, we use an XML-like for-
mat as a dsl intended to be used as part of code comments.
We chose an XML-like format as it is convenient to be parsed
and as we assume that the syntax is familiar to many pro-
grammers, so that they can learn and memorize it quickly.
Listing 1 shows an example of how this dsl can be used.
Examples must have a defined name and provide valid input
values using XML attributes. They also support an optional

7

https://github.com/hpi-swa-lab/graal/tree/onward20-paper


Onward! ’20, November 18–20, 2020, Virtual, USA F. Niephaus, P. Rein, J. Edding, J. Hering, B. König, K. Opahle, N. Scordialo, and R. Hirschfeld

GraalVM Visual Studio Code

GraalVM VS Code Extension

1. didOpen and
didChange

Event

3. setDecorations
API Call

LSP Client

Truffle

Instrumentation API

Graal.js TruffleSqueakTruffleRuby

implemented using

...

TruffleLSP

2. setDecorations
Notification

Babylonian Instrument

Visual Studio Code Editor

uses

SimpleLanguage

Figure 2. Architectural overview. All GraalVM languages (blue) are implemented in Truffle. The TruffleLSP uses its instrumen-
tation framework (green). We introduced a new Babylonian instrument within the TruffleLSP and extended the lsp client (both
yellow). The numbered items depict the live feedback loop from the moment the user opens or modifies a file until feedback is
provided in VS Code.

:probe-mode attribute, which can be set to either default, all,
or off. By default, only return values and explicit probes are
shown. The all mode shows probes for all statements, similar
to how debuggers, such as the Chrome debugger, show values
after each line of the code. Probing can be turned off without
having to remove an example. Probe definitions support an
optional :example attribute. This is also the case for assertion
definitions. Additionally, they require an expected value or
an expression that should evaluate to true.
Furthermore, we leverage Truffle and its language-

agnostic asts to find function declarations including their
signature. This information is sent asynchronously to our
lsp client, which uses it for an example wizard that can be
triggered through a code lens. Code lenses are part of the lsp,
supported by VS Code, and allow the annotation of source
with links to trigger certain actions. In our case, we annotate
function declarations with an “Add Example” action that
opens appropriate ui components in VS Code to define new
examples. This way, it is possible to set a name, the probe
mode, and all parameters and input values. After the user
has defined a new example, the example definition is sent to
the extended TruffleLSP server, which generates the example
definition, modifies the file accordingly, runs the examples,
and informs the client about the modification. To the user,
this operation is transparent. It is, however, necessary to
perform the modification through the server, because it has
additional ast information required for correctly placing
examples.

6 Walkthrough and Polyglot Scenario

In the following, we walk the reader through our language-
agnostic Babylonian Programming system and give an ex-
ample for how it can be used for polyglot programming.

6.1 Walkthrough

In this section, we walk the reader through an example work-
flow using the series of screenshots from Figure 3. The ex-
ample is inspired by the code in Listing 1.
Figure 3a shows the starting point: A function for con-

verting Fahrenheit to Celsius that the user has developed.
The function is annotated with our “Add Example” code lens.
Instead of a unit test, the user decides to use an example
by clicking on the code lens. The example wizard is opened
and the user is prompted to provide a name, probe mode,
and an example value for the fahrenheit parameter (Fig-
ure 3b). After accepting the new example, a corresponding
code comment is generated and added to the toCelsius()

function. Almost instantly, the example in line 2 is annotated
with the calculated result (Figure 3c). 50 degrees Fahrenheit,
however, are 10 degrees Celsius, not 32.4. The user there-
fore decides to add an appropriate assertion on the return
statement (line 5 of Figure 3d). As expected, the assertion
fails for the given example, which is visualized with an X
mark. The user now adds a probe with fahrenheit - 32 as
expression (line 5 of Figure 3e). The system almost immedi-
ately reports that the probe result is 18, which is expected.
Therefore, the multiplier in line 7 must be incorrect. The user
realizes the multiplier needs to be inverted, after which the
assertions succeeds as visualized with a check mark. Also,
the correct result is displayed in the decoration of the ex-
ample in line 2 of Figure 3e. Finally, the user may decide to
use toCelsius() in another function of the program, such as
the getTemperatureText() function (line 2 of Figure 3f). An
example can also be added to this function, which not only
reveals what it returns for fahrenheit=80 in the correspond-
ing example decoration. The probe in line 10 is also active
for this additional example, as one can see in the annotation
in line 10: It shows that the value is 48 for the example of
the getTemperatureText() function and 18 for the example

8



Example-Based Live Programming for Everyone Onward! ’20, November 18–20, 2020, Virtual, USA

(a) Starting point: a Fahrenheit-to-Celsius conversion function written
in JavaScript.

(b) Defining an example using the wizard.

(c) Code with an example definition revealing a problem in the
Fahrenheit-to-Celsius conversion.

(d) Sample code with an additional assertion.

(e) Refactored and fixed code with an additional probe ensuring the
conversion works correctly for the given example.

(f) Extended code with a getTemperatureText() function and a sec-
ond example revealing that the Celsius value is not rounded.

Figure 3. Screenshot series of VS Code running our GraalVM
extension with Babylonian Programming capabilities. The
series illustrates the evolution of the code as well as the
feedback by the system.

declared on toCelsius(). After seeing the result of the ex-
ample with the name “warm”, the user may want to round
the Celsius value in either function to ensure that the string
returned by getTemperatureText() is nice and short.

6.2 Example-Based Live, Polyglot Programming

Implementing a Babylonian Programming system in a
language-agnostic way not only avoids the costs of having
to implement the same mechanisms from scratch for each
language ecosystem. It also makes it possible to leverage the
system for polyglot programming where an application can
be built using multiple languages. The main premise of poly-
glot programming is to foster software reuse by enabling
programmers to use the best language, library, or framework
for the job.
Figure 4 shows a polyglot example program developed

in our Babylonian Programming system using JavaScript,
Ruby, and a third language called SimpleLanguage, which is
Truffle’s reference language implementation. The JavaScript
file contains a getTemperatureText() function similar to the
example in Figure 3. This time, however, the function takes
a city as argument and returns a formatted string with the
city and corresponding temperature information as result.
The function is annotated with two examples in line 2 and 3,
“London” and “San Francisco”. In the first line of the function,
a probe on the city variable is set and displays the expected
city names for each example. In line 7, GraalVM’s polyglot
api is used to call out to Ruby, which downloads a JSON-
formatted file synchronously from openweathermap.org for
the given city. In the same line, the result is passed into
JavaScript’s JSON.parse() function to turn the JSON con-
tent into a JavaScript object. To ensure that the temperature
information for London in the UK, not Ontario is found,
an assertion is present in line 8. Note that this assertion
is example-specific and therefore not checked for the “San
Francisco” example. In line 9, the JavaScript code calls out
to Ruby again, this time evaluating the render.rb file dis-
played in the middle of the screenshot. Since the file re-
turns a lambda-like Ruby Proc, it can be called with city

and fahrenheit parameters. The result for each example is
displayed in their decorations in line 2 and 3 of the js file. The
Ruby file, in turn, converts the fahrenheit parameter using
the toCelsius() routine written in SimpleLanguage. This
routine also contains a probe that is active for both examples.
This probe reveals that SimpleLanguage is so simple that it
does not support floating-point numbers. Therefore, the pro-
gram continues with imprecise values from this point on. For
comparison, we have added a probe with an expression to
the render.rb file in line 5 that calculates the precise Celsius
values in Ruby. Additionally, the following line contains an-
other probe, this time with an erroneous expression. Instead
of letting the instrumentation fail entirely, our Babylonian
Programming system is able to display an appropriate error
message as decoration instead. In line 7 of the render.rb file,

9



Onward! ’20, November 18–20, 2020, Virtual, USA F. Niephaus, P. Rein, J. Edding, J. Hering, B. König, K. Opahle, N. Scordialo, and R. Hirschfeld

Figure 4. Exemplified polyglot code to determine temperature information for a given city using JavaScript (js), Ruby, and
SimpleLanguage (sl). The probes set in Ruby and sl are triggered by the examples defined in js.

the program uses Ruby’s templating language to render the
string that is finally returned by getTemperatureText().
This constructed polyglot example allows us to make a

number of observations about our Babylonian Programming
system and GraalVM’s approach to polyglot programming:
First, it demonstrates that the system can indeed be used
throughout different programming languages at the same
time. We also saw that the instrumentation is robust and ca-
pable of dealing with errors. In addition, the evalFile func-
tion of the polyglot api requires language-specific tricks,
such as the Ruby Proc, to return something useful. Instead,
it might be more convenient to load and import foreign
code through the module system of a language. Moreover,
we were able to observe misbehavior in the program intro-
duced by the use of SimpleLanguage. One could argue that
it is not intended to be used to build sophisticated software.
Nonetheless, we believe this misbehavior is a representative
example for the kind of issues that can easily be encountered
during polyglot programming. Live tools such as our Baby-
lonian Programming system can help programmers to better
understand different language semantics and consequently
produce less errors when mixing software from different
language ecosystems. Lastly, we discuss the limitations of
our system with regard to polyglot programming in detail
in Section 7.3.

7 Discussion

The main features of elp is the feedback loop resulting from
making any function in a system executable through an-
notated examples, and providing fine-grained feedback di-
rectly within the ide or code editor. Our prototype demon-
strates that it is possible to provide this feedback loop using
a language-agnostic infrastructure. The major obstacles to
implementing a richer ui beyond the dsl result from the
limited set of ui concepts of the target programming envi-
ronment. The instrumentation level can provide all dynamic
information for current elp features.

In this section, we discuss our approach and implementa-
tion with regard to the provided elp features and observed
limitations. We further describe whether the limitations pose
fundamental issues to a language-agnostic implementation
of elp, whether they are a result of our implementation, or
whether they are merely left out of the prototypical imple-
mentation.

7.1 Comparison of Features

Table 2 shows to which extent our prototype implements
elp features by comparing the implemented features of the
prototype with the features of the original Babylonian Pro-
gramming system and the example-centric programming

10



Example-Based Live Programming for Everyone Onward! ’20, November 18–20, 2020, Virtual, USA
T
a
b
l
e
2
.
An

ov
er
vi
ew

of
th
ef
ea
tu
re
so

ft
he

ex
am

pl
e-
ce
nt
ric

en
vi
ro
nm

en
t[
1]
,t
he

or
ig
in
al
Ba

by
lo
ni
an

Pr
og

ra
m
m
in
g
sy
st
em

,a
nd

ou
rl
an
gu

ag
e-
ag
no

st
ic
pr
ot
ot
yp

e.
A
dd

iti
on

al
ly
,t
he

ov
er
vi
ew

lis
ts

th
e
re
sp
ec
tiv

e
ob
st
ac
le
s
to

im
pl
em

en
tin

g
m
iss

in
g
fe
at
ur
es
.T

he
lis
to

ff
ea
tu
re
s
is
ba
se
d
on

an
ov
er
vi
ew

of
fe
at
ur
es

of
el
p

sy
st
em

s[
23
].
W
ed

ist
in
gu

ish
be
tw

ee
n
ob
st
ac
le
so

n
th
es

id
eo

ft
he

us
er

in
te
rfa

ce
an
d
in
st
ru
m
en
ta
tio

n
ob
st
ac
le
s.
Ob

st
ac
le
sd

es
cr
ib
ed

as
“c
on

ce
pt
ua
lly

ch
al
le
ng

in
g”

ar
e
di
ffi
cu
lt
to

re
co
nc
ile

w
ith

a
la
ng

ua
ge
-a
gn

os
tic

im
pl
em

en
ta
tio

n
in

ge
ne
ra
l,
“te

ch
ni
ca
lly

ch
al
le
ng

in
g”

m
ea
ns

th
at

th
e
fe
at
ur
e
is
di
ffi
cu
lt
to

im
pl
em

en
tw

ith
th
e

ch
os
en

te
ch
no

lo
gi
es
,“
no

ty
et

im
pl
em

en
te
d”

m
ea
ns

th
at

th
e
fe
at
ur
es

is
sim

pl
y
no

ti
m
pl
em

en
te
d
ye
t,
“✓

”m
ea
ns

th
at

no
fu
rth

er
w
or
k
is
re
qu

ire
d.

su
pp

or
tf
or

fe
at
ur
e

ob
st
ac
le
s

fe
at
ur
e

ex
am

pl
e-
ce
nt
ric

en
v.

or
ig
in
al
im

pl
em

en
ta
tio

n
ou

rp
ro
to
ty
pe

us
er

in
te
rfa

ce
in
st
ru
m
en
ta
tio

n

gr
an
ul
ar
ity

of
fe
ed
ba
ck

st
at
em

en
t-l
ev
el

pr
ob

e
on

an
y
ex
pr
es
sio

n
in

pr
og

ra
m

co
de

st
at
em

en
t-l
ev
el
,p
ro
be
s

w
ith

ow
n
ex
pr
es
sio

n
✓

✓

st
at
e
ov
er

tim
e

na
vi
ga
te

to
po

in
ts
in

tim
e

st
at
es

of
pr
ob

e
in
lin

e,
ex
pl
ic
it
st
at
e
tr
an
sit
io
ns
,

sli
de
rs

to
na
vi
ga
te

st
at
es

of
pr
ob

e
in
lin

e
sli
de
rs
:t
ec
hn

ic
al
ly

ch
al
-

le
ng

in
g

st
at
e
tr
an
sit
io
ns
:t
ec
hn

i-
ca
lly

ch
al
le
ng

in
g

st
at
e
ov
er

m
od

ul
es

na
vi
ga
tin

g
th
e
fu
ll
tra

ce
al
lp

ro
be
st
hr
ou

gh
ou

tt
he

sy
st
em

sh
ow

re
su
lts

al
lp

ro
be
st
hr
ou

gh
ou

tt
he

sy
st
em

sh
ow

re
su
lts

✓
✓

ar
bi
tra

ry
ob
je
ct
s

no
te

xp
lic
itl
y
co
ve
re
d

ob
je
ct
id
en
tit
y
th
ro
ug

h
em

ot
ic
on

s,
co
m
pl
ex

st
at
e

in
pr
ob

e
w
id
ge
t,
ob
je
ct

in
sp
ec
to
r

co
m
pl
ex

st
at
e
as

“d
isp

la
y

st
rin

g”
ob
je
ct
id
en
tit
y:
no

ty
et

im
pl
em

en
te
d,
ob
je
ct

in
sp
ec
to
r:
no

ty
et

im
pl
e-

m
en
te
d

ob
je
ct
in
sp
ec
to
r:
no

ty
et

im
pl
em

en
te
d

do
m
ai
n-
sp
ec
ifi
c

fe
ed
ba
ck

no
ne

no
ne

no
ne

co
nc
ep
tu
al
ly

ch
al
le
ng

in
g

✓

m
ul
tip

le
ex
am

-
pl
es

m
ul
tip

le
im

pl
ic
it
ex
am

pl
es
,

se
le
ct
io
n
th
ro
ug

h
tra

ce
m
ul
tip

le
ex
pl
ic
it
ex
am

-
pl
es
,n

am
ed

ex
am

pl
es
,

in
di
vi
du

al
ly

en
ab
le
d

m
ul
tip

le
ex
pl
ic
it
ex
am

-
pl
es
,n

am
ed

ex
am

pl
es
,

in
di
vi
du

al
ly

en
ab
le
d

em
be
dd

ed
gr
ap
hi
ca
l

ed
ito

rs
:t
ec
hn

ic
al
ly

ch
al
-

le
ng

in
g

✓

re
us
in
g
ex
am

-
pl
e
pa
rts

th
ro
ug

h
va
ria

bl
es

in
th
e

pr
og

ra
m

th
ro
ug

h
na
m
ed

in
st
an
ce

te
m
pl
at
es
,l
in
ks

to
ob
je
ct
s

no
ne

no
ty

et
im

pl
em

en
te
d

✓

be
ha
vi
or
al

hi
gh

lig
ht
in
g

ex
ec
ut
ed

st
at
em

en
ts
pe
r

ex
am

pl
e
(tr
ac
e)

ex
ec
ut
ed

st
at
em

en
ts
pe
r

ex
am

pl
e
(tr
ac
e)

ex
ec
ut
ed

st
at
em

en
ts
pe
r

ex
am

pl
e
(tr
ac
e)

✓
✓

sp
ec
ify

in
g

co
nt
ex
t

ex
pl
ic
it
se
tu
p
co
de

be
fo
re

im
pl
ic
it
ex
am

pl
e

au
to
m
at
ic
al
ly

ex
ec
ut
ed

pr
e-

an
d
po

st
sc
rip

ts
,r
e-

pl
ac
em

en
ts
,e
xe
cu
tio

ns
pa
rti
al
ly

iso
la
te
d

ex
ec
ut
io
ns

ar
e
iso

la
te
d
in

sa
nd

bo
x

pr
e-

an
d
po

st
sc
rip

ts
,

re
pl
ac
em

en
ts
:n

ot
ye
t

im
pl
em

en
te
d

pr
e-

an
d
po

st
sc
rip

ts
,

re
pl
ac
em

en
ts
:n

ot
ye
t

im
pl
em

en
te
d

ke
ep
in
g
tr
ac
k

of
as
su
m
pt
io
ns

lo
ca
tio

ns
of

ex
ce
pt
io
ns
,

as
se
rti
on

si
n
tra

ce
vi
ew

sh
ow

se
rr
on

eo
us

ex
am

pl
es

sh
ow

se
rr
on

eo
us

ex
am

-
pl
es
,e
xa
m
pl
e-
sp
ec
ifi
c

as
se
rti
on

si
nl
in
e

✓
✓

na
vi
ga
tin

g
th
e

tra
ce

fu
ll
tr
ac
e
vi
ew

fo
rn

av
ig
a-

tio
n

sli
de
rs

fo
ri
te
ra
tio

ns
an
d

ac
tiv

at
io
ns

no
ne

sli
de
rs
:t
ec
hn

ic
al
ly

ch
al
-

le
ng

in
g,
tr
ac
e
ov
er
vi
ew

:
no

ty
et

im
pl
em

en
te
d

✓

11



Onward! ’20, November 18–20, 2020, Virtual, USA F. Niephaus, P. Rein, J. Edding, J. Hering, B. König, K. Opahle, N. Scordialo, and R. Hirschfeld

environment, which is a prominent and early elp environ-
ment [1].

The example-centric environment is not based on probes
but rather on a fully recorded trace (as an optimization, only
these parts of a system are traced which are currently vis-
ible to users). As a consequence, while providing a similar
experience, the available features are different from imple-
mentations of the Babylonian Programming system.
In general, our prototype can provide the fundamental

live feedback loop of elp systems. Programmers can specify
and activate multiple examples through the dsl and they can
get feedback on all results of selected statements throughout
the entire system. Complex objects are currently supported
through the toDisplayString message provided by Truffle’s
InteropLibrary, which retrieves a human readable string
representation for any object. Similar to the example-centric
system, users can also add example-specific assertions to
quickly discover violated assumptions. Beyond feedback on
the results, the system can visualize which lines were actually
executed by showing probes for all statements, and it can
display which examples caused an exception.

Three major features are currently missing from our pro-
totype: navigating the trace, inspecting complex objects, and
specifying context beyond an isolated execution environ-
ment. The specification of context and an inspector for com-
plex objects are possible but not implemented yet due to
time constraints. The trace navigation as supported by the
original Babylonian Programming system faces more fun-
damental challenges resulting from the features of VS Code.
We discuss the way forward and the underlying obstacles in
the following paragraphs.

7.2 Missing ui Concepts

Amajor obstacle to a richer user interface are the ui concepts
provided by the programming environment. Two major user
interface concepts that were available in the original Baby-
lonian Programming system are missing from our prototype
due to this (see Table 2): sliders and embedded graphical
editors.

The first limitation is missing ui sliders, which other Baby-
lonian Programming systems, such as Babylonian/JS, provide
to allow users to scroll through loops and recursive function
calls. We were unable to add sliders through the VS Code
extension as VS Code only allows a predefined set of ui com-
ponents in the editor, none matching the functionality of
a slider. Instead, we could have introduced another kind of
annotation in the dsl or an overview of the complete trace
in an additional panel.
The second limitation results from the same underlying

reason. Due to the restricted set of ui components in the
VS Code editor, our system is unable to provide embedded
graphical editors for instance templates, pre- and postscripts,
assertion annotations, probes with their own expression, or
replacements. In general, programmers could modify all of

these through the dsl, thus making the features available.
At the same time, graphical tool support might lessen the
cognitive overhead of switching between the programming
language and the dsl and is therefore desirable.

In summary, the main obstacle for a more expressive user
interface, at the time of writing, are the visualization ca-
pabilities available to current lsp clients. VS Code seems
to provide the best coverage of the features of the lsp. For
example, VS Code appears to be the only lsp client with
proper support for code lenses. The reason for this might
be that the lsp and VS Code are both maintained by Mi-
crosoft, which is also the reason why we chose to implement
our approach based on them. However, the amount of ui
components we could use for our implementation was still
quite limited: Although VS Code’s ui is makes use of HTML
and JavaScript, extensions do not seem to be allowed to add
custom HTML-based components. Instead, we were limited
to setDecorations and code lenses.
All these limitations, however, are technical issues im-

posed by our decision to use VS Code as client. Other multi-
purpose ides or code editors with lsp clients3, such as Eclipse,
Atom, or Sublime Text, might not comewith such restrictions
and might, for instance, provide graphical editors for exam-
ples or annotations. These modifications would, however,
again be environment-specific.
Nevertheless, these ui limitations do not constrain the

key contribution of elp which is the live feedback loop that
results from adding concrete examples to code and being able
to see intermediate runtime states directly within the source
code. By providing elp features through the textual dsl, we
might get a less convenient ui, but we gain support for the
elp experience in a variety of programming environments.

Other ui Limitations. A fundamental limitation is
the lack of environment-agnostic mechanisms to provide
“domain-specific feedback”. Through providing custom visu-
alizations for domain-objects, probes might become more
useful, for example by displaying objects representing angles
as a direction vector. This feature is also missing from most
other elp systems [23]. However, supporting this feature
as part of the environment-agnostic part of the elp imple-
mentation might not be possible. Any mechanism to provide
domain-specific visualizations of runtime values will have
to be provided by the implementers of the extension of the
target environment and cannot be shared between environ-
ments.

In addition, the code decorations we use display the result
of each example in a single line. This is a minor limitation.
While it is possible to horizontally scroll through all of them
in VS Code, it could be hard to find the right result in case
many examples are active at the same time. Users, however,
are in full control over the number of active examples.
3See https://git.io/JJHaO for a list of tools supporting the LSP (accessed
2020-08-12)

12

https://git.io/JJHaO


Example-Based Live Programming for Everyone Onward! ’20, November 18–20, 2020, Virtual, USA

7.3 Instrumentation and GraalVM

Apart from ui limitations on the side of the client, our im-
plementation has some limitations with regard to program
instrumentation and GraalVM.
Replacements as well as pre- and postscripts have

not been implemented yet due to time constraints. Both
pose no fundamental challenges. For example, replace-
ments, could be implemented in Truffle’s instrumenta-
tion framework by throwing an unwind throwable (e.g.
throw context.createUnwind(alternativeReturnValue)) in
the onEnter hook of our ExecutionEventNodeFactory. This
would not only force a different return value, it would also
avoid the execution of the replaced node entirely, which is
the expected behavior for replacements. Again, a graphi-
cal tool would be the more challenging part for supporting
replacements within an ide.
A more challenging limitation are probes attached to

variable assignments as supported by previous implementa-
tions of the Babylonian Programming system. These probes
can show the value of a variable before and after the
assignment. Currently, probes are attached to nodes de-
noted with the StatementTag, which does not provide ac-
cess to a potential variable assignment. In Python, for ex-
ample, assignments always return None. Through using the
WriteVariableTag it would be possible to determine the value
of the variable before and after the assignment. However,
the WriteVariableTag is a new part of the instrumentation
framework therefore not fully supported by GraalVM lan-
guages.
The runtime must be able to provide timely feedback.

Therefore, instrumentation must not decrease the run-time
performance of a program significantly. Since run-time per-
formance is a primary goal of GraalVM and all of its apis,
we believe it is a good fit for building elp systems. A prelim-
inary response time analysis of our system can be found in
Appendix A.

In addition, our system is currently limited to JavaScript,
Ruby, and SimpleLanguage, because we rely on a relatively
new api and we are one of the first tool builders to use it. At
the time of writing, only JavaScript is officially supported by
GraalVM. SimpleLanguage is a reference toy language not
intended to be used in production. And all other languages,
including Ruby, are considered experimental.
Moreover, we identified numerous inconsistencies in the

support for both instrumentation and interoperability of
GraalVM languages. Figure 4, for example, shows that Ruby
does not currently support to find function declarations yet.
This is the reason why no code lenses are displayed in the
Ruby part of the program. Moreover, the StatementTags are
not fully or correctly supported by all GraalVM languages
yet, avoiding some probes and assertion from triggering.
In terms of interoperability issues, we found that the im-
plementation of certain InteropLibrary messages, such as

toDisplayString(), are missing or inconsistent across lan-
guages.
All of these limitations and issues are not fundamental.

The GraalVM team is aware of the mentioned shortcom-
ings and we are working with them to resolve them in a
future version of GraalVM. When this is the case, our Baby-
lonian Programming system will work consistently across
all GraalVM languages.

Architectural Considerations. Our approach demon-
strates that the run-time information required by a Baby-
lonian Programming system can be fully provided in a
language-agnostic way by the Truffle instrumentation frame-
work. We believe that an implementation using Truffle is
superior to the code rewriting approach used in Babyloni-
an/JS and found that is just as elegant as the approach based
on Context-Oriented Programming (cop) in Babylonian/S,
but potentially capable of providing better performance. In
the latter case, the support for cop is also quite language-
specific, which we were able to avoid by implementing the
mechanism in a language implementation framework rather
than in a specific language implementation.
Furthermore, the lsp can be easily extended with hooks

needed to implement a Babylonian Programming system
without breaking compatibility with other lsp clients. Our
implementation shows that this is relatively easy to do, which
may encourage other tool builders to base their future tooling
on Truffle and the lsp as well.

7.4 elp and Polyglot Programming

Being able to use one tool across different languages avoids
the costs of learning language-specific tools for program-
mers and improves the programming experience by making
it more consistent. In the context of polyglot programming,
a Babylonian Programming system can help programmers
better understand the effects imposed by mixing different
languages, such as differences in semantics. In the simple
polyglot example shown in Figure 4, the system instantly re-
vealed that SimpleLanguage does not support floating-point
numbers and that such numbers are rounded down to nat-
ural numbers when passed to SimpleLanguage. We believe
that our Babylonian Programming system can therefore help
to make polyglot programming more approachable to pro-
grammers. Further evaluation in the form of a user study,
however, is still needed.

7.5 The Future of Rich, Language-Agnostic Tooling

The LSP is designed to decouple language-specific tool im-
plementations from the corresponding graphical ui in ides
to provide more flexibility to programmers. This is done
by providing information about the code in question for
code completion, goto definitions, and other common ide
features. This information is often obtained though static
code analysis by an lsp server. As the TruffleLSP project

13



Onward! ’20, November 18–20, 2020, Virtual, USA F. Niephaus, P. Rein, J. Edding, J. Hering, B. König, K. Opahle, N. Scordialo, and R. Hirschfeld

has demonstrated, features provided through the lsp can
be further enhanced with dynamic run-time information
(e.g. code completion) and new ones can be added (e.g. code
coverage) [28].

In the future, we would like to see this idea being pushed
even further by supporting more programming features that
rely on dynamic run-time information. Some of these fea-
tures, for example an infrastructure for building object in-
spection tools, are already provided by other protocols, such
as the Chrome DevTools Protocol [5]. That similar protocols
can be implemented in a language-agnostic way has also
been demonstrated by GraalVM, which comes with built-
in support for the Chrome DevTools Protocol since its first
stable release. Combining the lsp with such a debugging
protocol would therefore enable further ide features that
help programmers to understand the run-time behavior of
their programs.
Nonetheless, our community has explored various other

approaches to improve the programming experience. As this
work has demonstrated, it is possible to integrate a live feed-
back loop into the lsp. Making such a loop officially part
of the protocol would encourage all lsp clients to add sup-
port for live programming. In particular, we believe the lsp
would benefit from the ability to evaluate code interactively
and to instrument programs. In some ways, this is what
Jupyter kernels [11] enable in notebooks: Provide a backend
for interactive code execution.

Even if full, first-class elp support may not be added to lsp,
supporting a richer set of ui concepts might make powerful
tools more reusable and as a consequence more feasible. For
example, as our prototype hints, adding lsp requests for
generic decorations with full HTML support would already
enable many of the features of live probes.

Ultimately, if we manage to extend the lsp in any of these
ways, we believe it would be possible to enable more live
and exploratory programming features in today’s commonly
used programming environments.

8 Related Work

The goal to provide reusable tooling across programming
languages or programming environments is part of many
approaches.
Various execution environments expose information

through apis which that can be used to create debugging
tools, for example the Java Debug Interface (jdi) [22] or the
Python debugger framework library bdb [3]. Beyond these
apis, there are also protocols defined between programming
and execution environments, similar to the lsp. These pro-
tocols aim to decouple the implementation of tools from
the user interface even further. A contemporary example
of such a protocol is Microsoft’s Debug Adapter Protocol
(dap) [17]. The dap aims to provide a common protocol be-
tween user interfaces for debuggers and language-specific

debugger implementations, thereby making both sides easier
to reuse. Besides full protocols for specific tools, there have
also been efforts towards reusable data formats, for example
the OPEN.xtrace format for execution traces [21].
A different approach that can also provide language-

agnostic tooling are language workbenches [4]. Language
workbenches aim to support programmers with developing
new languages and the corresponding development environ-
ments. Based on the language definition, many workbenches
can provide static tool support, such as syntax highlighting,
code navigation, or refactoring [2]. While the resulting tool
implementations are bound to a specific language, the code
for generating these tools is language-agnostic.
Finally, there are a number of approaches directly built

upon the Truffle infrastructure. The initial work that pre-
sented Truffle’s instrumentation framework demonstrated
how this api can be used to build fast, language-agnostic
tools such as debuggers, code coverage tools, and tools for
dynamic program analysis [30]. Based on this infrastructure
GraalVM, for example, provides support for the Chrome
DevTools Debugger Protocol across all supported languages,
a code coverage tool, and various profiling tools. None of
the tools, however, aim at providing live feedback in the
sense of elp or exploratory programming. Moreover, they
assume good performance based on previous work on self-
optimizing ast interpreters [34]. A later evaluation study
with a prototypical Ruby debugger showed that debugging
tools on top of the instrumentation framework are fast [27],
another study showed the same for dynamic program analy-
sis for Node.js [29]. Our work demonstrates that this infras-
tructure can also be used to build tools for live feedback and
therefore enable elp.

9 Conclusion and Future Work

We presented an approach for building an elp system,
more specifically the Babylonian Programming system, in a
language-agnostic way based on GraalVM’s Truffle frame-
work and the lsp. We demonstrated that both Truffle and the
lsp meet the requirements for enabling a language-agnostic
implementation of an elp system. Such an implementation
keeps the cost of tool building low without sacrificing its
core functionality. Furthermore, it allows programmers to
use the tools in a more consistent way across languages, and
in the context of polyglot programming.

We have implemented our approach based on GraalVM’s
TruffleLSP and its extension for VS Code. We have demon-
strated how this implementation is able to bring elp to
VS Code and explained how the lsp specification could be
extended to make our approach fully environment-agnostic.
We gave examples for how our system can be used and how
it can help to build polyglot applications. And we discussed
advantages and limitations of our approach, based on what
we have learned from our prototype.

14



Example-Based Live Programming for Everyone Onward! ’20, November 18–20, 2020, Virtual, USA

Apart from some features that we could not implemented
due to time constraints, we identified several problems in
GraalVM languages that must be addresses to make the in-
strumentation framework and hence our tooling work cor-
rectly. Additional directions for future work include explor-
ing other lsp clients and corresponding ides and code editors
with regard to appropriate ui components for visualizing
dynamic run-time information. Based on the results, an of-
ficial proposal for extending the lsp specification could be
submitted. Future work may also investigate if our language-
agnostic tooling can be used for static languages such as
C or C++ or for languages that are not file-based such as
Squeak/Smalltalk. Future work could also aim at finding out
to what extent our approach can be applied to other language
implementation frameworks such as RPython.

We hope this work encourages other tool builders to think
about language-agnostic approaches for their tools, which
can keep development costs low and help to make them
available to a broader audience.

Acknowledgments

We gratefully acknowledge the financial support of HPI’s
Research School4 and the Hasso Plattner Design Thinking
Research Program5.

A Response Time Analysis

Table 3. Number of source lines of code (sloc) per language,
examples, probes, and assertions of the three benchmarks.

#1 Example #2 Toy #3 Polyglot Toy

SLOC 7 js 207 js 207 js + 11 sl
Examples 2 10 10

Probes 2 100 101
Assertions 1 100 100

To evaluate the usability of our implementation further, we
analyzed the response time of the initial version of the sys-
tem based on GraalVM 20.0.0 using three micro-benchmarks.
In practice, we expect the response time to be dominated
by the duration of the execution of the example which very
much depends on the application. Thus, in these benchmarks,
we focus on getting a first impression of the magnitude of the
overhead imposed by our tooling infrastructure. The bench-
mark results were taken from our prototype system, which
focuses on functionality and does not aim at performance
yet, and should therefore be taken with a grain of salt.
For the response time analysis, we measured the adapta-

tion and emergence phases [24] for the example program
from Section 6.1 (#1) as well as for two additional toy pro-
grams. Both toy programs are based on a JavaScript file that

4https://hpi.de/en/research/research-school.html
5https://hpi.de/en/dtrp/

A1 E1 A2 E2 A3 E3
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800 #1
W
alkthrough

Exam
ple

#2
Toy

Program

#3
PolyglotToy

Program

m
s

Figure 5. Adaptation (A1, A2, A3) and Emergence (E1, E2,
E3) analysis of three different benchmark programs, 100 data
points each. The ends of the whiskers represent the low-
est and highest datum within 1.5 IQR of the corresponding
quartile.

applies an operator inline 100 times to a given number with
probes and another 100 times with assertions. In the first toy
program (#2), the operator increments the number randomly.
In the other one (#3), we use an operator written in Simple-
Language, which turns the toy program into a polyglot one
crossing the language boundary 200 times for the operator.
This SimpleLanguage operator is based on the toCelsius()

function from Figure 4, includes a probe, and returns zero if
the result exceeds 4000. Table 3 lists the characteristics of
each program. For the benchmark, we define the adaptation
phase as the time between a didChange or didOpen event is
triggered by the user in the code editor until the server has

15

https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/


Onward! ’20, November 18–20, 2020, Virtual, USA F. Niephaus, P. Rein, J. Edding, J. Hering, B. König, K. Opahle, N. Scordialo, and R. Hirschfeld

compiled the modified code. The latter moment is also when
the emergence phase starts: right before the code is executed
in the context of our Truffle instrument. It ends right after
the setDecorations api call was triggered in the editor. In or-
der to reduce the influence of external factors, we produced
100 data points for each benchmark by changing a constant
value randomly by hand. All benchmarks were performed on
a 13-inch MacBookPro15,2 (CPU: 2.7 GHz Quad-Core Intel
Core i7; Memory: 16 GB 2133 MHz LPDDR3). We used a
custom-built GraalVM Community Edition without libgraal,
which would offer faster JIT-compilation, and with VS Code
in extension development mode. To create a realistic sce-
nario and get an initial impression of response times to be
expected during programming, we did not close any other
applications, such as ides and terminals, that were open on
our development machine during each run.
Figure 5 shows the benchmarks results. The times of the

adaptation phase increase much more rapidly with the com-
plexity of the programs than the times of the emergence
phase. Nonetheless, the system is able to provide feedback in
under 20ms (mean(A1) + mean(E1)) for the first, under 200ms
for the second, and under 400ms for the third program. All
three benchmark programs run under one second, which is
considered the threshold after which a user starts wondering
if an interactive system is still responding [8, p. 163]. In case
of errors and timeouts, our system is still able to respond.
Therefore, we conclude that it may be feasible to apply our
approach in the context of Truffle and GraalVM.

References

[1] Jonathan Edwards. 2004. Example centric programming. In Companion
to the 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2004, Octo-
ber 24-28, 2004, Vancouver, BC, Canada, JohnM. Vlissides andDouglas C.
Schmidt (Eds.). ACM, 124. https://doi.org/10.1145/1028664.1028713

[2] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Mar-
tin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler,
Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist,
Guido Wachsmuth, and Jimi van der Woning. 2013. The State of
the Art in Language Workbenches - Conclusions from the Language
Workbench Challenge. In Software Language Engineering - 6th Inter-
national Conference, SLE 2013, Indianapolis, IN, USA, October 26-28,
2013. Proceedings (Lecture Notes in Computer Science), Martin Erwig,
Richard F. Paige, and Eric Van Wyk (Eds.), Vol. 8225. Springer, 197–217.
https://doi.org/10.1007/978-3-319-02654-1_11

[3] Python Software Foundation. 2020. bdb —Debugger framework. https:
//docs.python.org/3/library/bdb.html Accessed: 2020-03-20.

[4] Martin Fowler. 2005. Language Workbenches: The Killer-App for
Domain Specific Languages? https://martinfowler.com/articles/
languageWorkbench.html Accessed: 2020-05-20.

[5] Google. 2020. Chrome DevTools Protocol. https://chromedevtools.
github.io/devtools-protocol/ Accessed: 2020-03-20.

[6] Chris Granger. 2014. Light Table. http://lighttable.com Accessed:
2020-05-20.

[7] Tomoki Imai, Hidehiko Masuhara, and Tomoyuki Aotani. 2015. Shi-
ranui: a live programming with support for unit testing. In Com-
panion Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Systems, Programming, Languages and Applications: Soft-
ware for Humanity, SPLASH 2015, Pittsburgh, PA, USA, October 25-
30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 36–37.
https://doi.org/10.1145/2814189.2817268

[8] Jeff Johnson. 2014. Designing with the Mind in Mind, Second Edition:
Simple Guide to Understanding User Interface Design Guidelines (2nd
ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[9] JSON-RPC Working Group. 2020. JSON-RPC 2.0 Specification. https:
//www.jsonrpc.org/specification Accessed: 2020-05-12.

[10] Saketh Kasibatla and Alessandro Warth. 2017. Seymour: Live Pro-
gramming for the Classroom. https://harc.github.io/seymour-live2017/
Accessed: 2020-05-22.

[11] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia
Abdalla, Carol Willing, and Jupyter development team. 2016. Jupyter
Notebooks ? a publishing format for reproducible computational work-
flows. In Positioning and Power in Academic Publishing: Players, Agents
and Agendas, Fernando Loizides and Birgit Scmidt (Eds.). IOS Press,
87–90. https://doi.org/10.3233/978-1-61499-649-1-87

[12] Donald E. Knuth. 1972. Ancient Babylonian Algorithms. Commun.
ACM 15, 7 (1972), 671–677. https://doi.org/10.1145/361454.361514

[13] Andrew J. Ko and Brad A. Myers. 2009. Finding Causes of Program
Output with the Java Whyline. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09).
Association for ComputingMachinery, New York, NY, USA, 1569–1578.
https://doi.org/10.1145/1518701.1518942

[14] Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and Jan O. Borchers.
2014. How live coding affects developers’ coding behavior. In IEEE Sym-
posium on Visual Languages and Human-Centric Computing, VL/HCC
2014, Melbourne, VIC, Australia, July 28 - August 1, 2014, Scott D. Flem-
ing, Andrew Fish, and Christopher Scaffidi (Eds.). IEEE Computer
Society, 5–8. https://doi.org/10.1109/VLHCC.2014.6883013

[15] Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visu-
alization for Live Programming. In CHI ’20: CHI Conference on Human
Factors in Computing Systems, Honolulu, HI, USA, April 25-30, 2020,
Regina Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres,
Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix Goguey,
Pernille Bjøn, Shengdong Zhao, Briane Paul Samson, and Rafal Kociel-
nik (Eds.). ACM, 1–7. https://doi.org/10.1145/3313831.3376494

[16] Sean McDirmid. 2013. Usable live programming. In ACM Symposium
on New Ideas in Programming and Reflections on Software, Onward!
2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013,
Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld (Eds.).
ACM, 53–62. https://doi.org/10.1145/2509578.2509585

[17] Microsoft. 2020. Debug Adapter Protocol. https://microsoft.github.io/
debug-adapter-protocol/ Accessed: 2020-05-20.

[18] Microsoft. 2020. Language Server Protocol. https://microsoft.github.
io/language-server-protocol/ Accessed: 2020-03-02.

[19] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. Graal-
Squeak: Toward a Smalltalk-Based Tooling Platform for Polyglot Pro-
gramming. In Proceedings of the 16th ACM SIGPLAN International Con-
ference on Managed Programming Languages and Runtimes (Athens,
Greece) (MPLR 2019). Association for Computing Machinery, New
York, NY, USA, 14–26. https://doi.org/10.1145/3357390.3361024

[20] Fabio Niephaus, Tim Felgentreff, Tobias Pape, Robert Hirschfeld, and
Marcel Taeumel. 2018. Live Multi-language Development and Runtime
Environments. The Art, Science, and Engineering of Programming 2, Ar-
ticle 8 (2018), 30 pages. Issue 3. https://doi.org/10.22152/programming-
journal.org/2018/2/8

16

https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1007/978-3-319-02654-1_11
https://docs.python.org/3/library/bdb.html
https://docs.python.org/3/library/bdb.html
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
http://lighttable.com
https://doi.org/10.1145/2814189.2817268
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://harc.github.io/seymour-live2017/
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/361454.361514
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/2509578.2509585
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.22152/programming-journal.org/2018/2/8


Example-Based Live Programming for Everyone Onward! ’20, November 18–20, 2020, Virtual, USA

[21] Dusan Okanovic, André van Hoorn, Christoph Heger, Alexander Wert,
and Stefan Siegl. 2016. Towards Performance Tooling Interoperabil-
ity: An Open Format for Representing Execution Traces. In Com-
puter Performance Engineering - 13th European Workshop, EPEW 2016,
Chios, Greece, October 5-7, 2016, Proceedings (Lecture Notes in Computer
Science), Dieter Fiems, Marco Paolieri, and Agapios N. Platis (Eds.),
Vol. 9951. Springer, 94–108. https://doi.org/10.1007/978-3-319-46433-
6_7

[22] Oracle. 2020. Java Debug Interface. https://docs.oracle.com/javase/
10/docs/api/jdk.jdi-summary.html Accessed: 2020-03-20.

[23] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert
Hirschfeld. 2019. Babylonian-style Programming - Design and Imple-
mentation of an Integration of Live Examples Into General-purpose
Source Code. Programming Journal 3, 3 (2019), 9. https://doi.org/10.
22152/programming-journal.org/2019/3/9

[24] Patrick Rein, Stefan Lehmann, Toni Mattis, and Robert Hirschfeld.
2016. How Live Are Live Programming Systems? Benchmarking the
Response Times of Live Programming Environments. In Proceedings
of the Programming Experience 2016 (PX/16) Workshop (Rome, Italy)
(PX/16). Association for Computing Machinery, New York, NY, USA,
1–8. https://doi.org/10.1145/2984380.2984381

[25] Patrick Rein, Jens Lincke, Stefan Ramson, Toni Mattis, Fabio Niephaus,
and Robert Hirschfeld. 2019. Implementing Babylonian/S by Putting
Examples Into Contexts: Tracing Instrumentation for Example-Based
Live Programming as a Use Case for Context-Oriented Programming.
In Proceedings of the Workshop on Context-Oriented Programming (Lon-
don, United Kingdom) (COP ’19). Association for Computing Machin-
ery, New York, NY, USA, 17–23. https://doi.org/10.1145/3340671.
3343358

[26] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and To-
bias Pape. 2018. Exploratory and Live, Programming and Coding:
A Literature Study Comparing Perspectives on Liveness. Program-
ming Journal 3, 1 (2018), 33. https://doi.org/10.22152/programming-
journal.org/2019/3/1

[27] Chris Seaton, Michael L. Van De Vanter, and Michael Haupt. 2014.
Debugging at Full Speed. In Proceedings of the Workshop on Dynamic
Languages and Applications (Edinburgh, United Kingdom) (Dyla’14).

Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/2617548.2617550

[28] Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and
Robert Hirschfeld. 2019. Language-independent development envi-
ronment support for dynamic runtimes. In Proceedings of the 15th
ACM SIGPLAN International Symposium on Dynamic Languages, DLS
2019, Athens, Greece, October 20, 2019. 80–90. https://doi.org/10.1145/
3359619.3359746

[29] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder.
2018. Efficient Dynamic Analysis for Node.Js. In Proceedings of the 27th
International Conference on Compiler Construction (Vienna, Austria)
(CC 2018). Association for Computing Machinery, New York, NY, USA,
196–206. https://doi.org/10.1145/3178372.3179527

[30] Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Christian
Humer, and Thomas Würthinger. 2018. Fast, Flexible, Polyglot In-
strumentation Support for Debuggers and other Tools. Program-
ming Journal 2, 3 (2018), 14. https://doi.org/10.22152/programming-
journal.org/2018/2/14

[31] Tijs van der Storm and Felienne Hermans. 2016. Live Literals. Pre-
sented at the Workshop on Live Programming (LIVE) 2016. https:
//homepages.cwi.nl/~storm/livelit/livelit.html Accessed: 2020-05-20.

[32] Bret Victor. 2012. Inventing on Principle. Presented at the the Canadian
University Software Engineering Conference (CUSEC) 2012. https:
//vimeo.com/36579366 Accessed: 2020-05-20.

[33] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to rule them all. In ACM Symposium on
New Ideas in Programming and Reflections on Software, Onward! 2013,
part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013. 187–204.
https://doi.org/10.1145/2509578.2509581

[34] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. 2012. Self-Optimizing AST In-
terpreters. In Proceedings of the 8th Symposium on Dynamic Languages
(Tucson, Arizona, USA) (DLS ’12). Association for Computing Ma-
chinery, New York, NY, USA, 73–82. https://doi.org/10.1145/2384577.
2384587

17

https://doi.org/10.1007/978-3-319-46433-6_7
https://doi.org/10.1007/978-3-319-46433-6_7
https://docs.oracle.com/javase/10/docs/api/jdk.jdi-summary.html
https://docs.oracle.com/javase/10/docs/api/jdk.jdi-summary.html
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1145/2984380.2984381
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.1145/3340671.3343358
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/2617548.2617550
https://doi.org/10.1145/3359619.3359746
https://doi.org/10.1145/3359619.3359746
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://homepages.cwi.nl/~storm/livelit/livelit.html
https://homepages.cwi.nl/~storm/livelit/livelit.html
https://vimeo.com/36579366
https://vimeo.com/36579366
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587

	Abstract
	1 Introduction
	2 Example-Based Live Programming: Features and Implementations
	2.1 Features of elp Environments
	2.2 Implementation Strategies of elp Systems

	3 Technology Background: Language-Agnostic Infrastructure
	3.1 Language Server Protocol
	3.2 GraalVM and Truffle

	4 Approach
	5 Implementation
	6 Walkthrough and Polyglot Scenario
	6.1 Walkthrough
	6.2 Example-Based Live, Polyglot Programming

	7 Discussion
	7.1 Comparison of Features
	7.2 Missing ui Concepts
	7.3 Instrumentation and GraalVM
	7.4 elp and Polyglot Programming
	7.5 The Future of Rich, Language-Agnostic Tooling

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	A Response Time Analysis
	References

