
GraalSqueak
Toward a Smalltalk-Based Tooling Platform for Polyglot Programming

Fabio Niephaus
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Tim Felgentreff
Oracle Labs

Potsdam, Germany
tim.felgentreff@oracle.com

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

Abstract
Polyglot programming provides software developers with a
broader choice in terms of software libraries and frameworks
available for building applications. Previous research and
engineering activities have focused on language interoper-
ability and the design and implementation of fast polyglot
runtimes.
To make polyglot programming more approachable for

developers, novel software development tools are needed
that help them build polyglot applications. We believe a
suitable prototyping platform helps to more quickly evaluate
new ideas for such tools.

In this paper we present GraalSqueak, a Squeak/Smalltalk
virtual machine implementation for the GraalVM. We re-
port our experience implementing GraalSqueak, evaluate
the performance of the language and the programming en-
vironment, and discuss how the system can be used as a
tooling platform for polyglot programming.

CCS Concepts • Software and its engineering→ Run-
time environments; Interpreters; Integrated and visual
development environments.

Keywords Squeak/Smalltalk, virtual machines, Truffle,
GraalVM, polyglot programming, tools, live development

ACM Reference Format:
Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. Graal-
Squeak: Toward a Smalltalk-Based Tooling Platform for Polyglot
Programming. In Proceedings of the 16th ACM SIGPLAN Interna-
tional Conference on Managed Programming Languages and Run-
times (MPLR ’19), October 21–22, 2019, Athens, Greece. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3357390.3361024

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MPLR ’19, October 21–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6977-0/19/10. . . $15.00
https://doi.org/10.1145/3357390.3361024

1 Introduction and Background
Polyglot programming is the practice of writing code in mul-
tiple programming languages in the same software project.
Therefore, it gives software engineers a much broader choice
in terms of software libraries and frameworks they can use
for building applications. The widespread use of mechanisms,
such as Foreign Function Interfaces (ffis) and Inter-process
Communication (ipc), demonstrates that it is desirable and
sometimes even necessary to be able to call out to software
written in other languages.

In the last years, polyglot runtime environments have be-
come more and more popular. The .NET framework [25]
and GraalVM [29] are among the most mature systems that
support the execution of multiple programming languages
including the interaction between them. Moreover, a lot of
research has focused on how languages can be combined and
executed efficiently. The .NET framework, for example, com-
piles all languages to its Common Intermediate Language
(cil) [6], which is then executed on its Common Language
Runtime (clr). GraalVM, on the other hand, requires that
all languages are implemented in Truffle [29], its language
implementation framework. Languages implemented in this
framework generate the same kinds of Abstract Syntax Trees
(asts) as an intermediate representation, which are then exe-
cuted and optimized by the Graal Just-in-time (jit) compiler.
Hence, languages can be integrated by mixing asts of differ-
ent languages [27].
Nonetheless, the availability of appropriate technologies

enabling fast execution of polyglot code is not sufficient to
make polyglot programming practical. We believe software
development tools supporting developers in writing polyglot
code are just as important. Therefore, the goal of our work
is to improve the polyglot programming experience. For this,
we want a platform that allows fast prototyping of tools for
polyglot programming.

Modern Integrated Development Environments (ides) pro-
vide comprehensive sets of tools for various languages. These
tool sets are powerful on the one hand. On the other hand,
they are often hard to extend or to adjust and are therefore
not a good choice when it comes to prototyping new tooling
ideas. Instead, we decided to use a Smalltalk programming
system, which has proven to be a great environment for

14

https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3357390.3361024

MPLR ’19, October 21–22, 2019, Athens, Greece Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

tooling experiments with its support for live, interactive soft-
ware development [24]. Its incremental compilation provides
short feedback loops as programs including tools can be mod-
ified while they are being used. More importantly, Smalltalk
is also a programming language and therefore operates on
the same level as all other languages supported by a polyglot
runtime.
Squeak/Smalltalk is an open Smalltalk system directly

derived from the Smalltalk-80 language specification [9].
This specification includes a small and well-defined byte-
code set, which can be implemented in a few thousands lines
of code [8]. Since we had prior experience implementing
a Squeak/Smalltalk virtual machine (vm) in the RPython
language implementation framework [7], we decided to im-
plement a vm for Squeak/Smalltalk in Truffle for GraalVM.
On the one hand, such frameworks allow language im-

plementers to use another high-level language and useful
components, such as garbage collectors or caching mech-
anisms, to implement fast vms for dynamic programming
languages. On the other hand, they have to make certain
design decisions upfront and hence enforce certain imple-
mentation styles and are usually designed to support a spe-
cific kind of interpretation model. Truffle, for example, is a
framework for implementing ast interpreters. Implementing
a bytecode interpreter for Squeak/Smalltalk in it is therefore
an interesting challenge on its own.

In this paper, we make the following contributions:
1. Present and evaluate a new vm implementation for

Squeak/Smalltalk
2. Show that GraalSqueak provides a solid foundation

for interactive polyglot development
3. Share our experience of using Truffle and GraalVM

and discuss their limitations with regard to Squeak/
Smalltalk

Outline The remainder of this paper is organized as fol-
lows. In the next section, we present our approach for Graal-
Squeak, followed by implementation details in Section 3.
Then, in Section 4, we evaluate the performance of Graal-
Squeak with two different types of benchmarks. Then, in Sec-
tion 5, we discuss GraalSqueak and elaborate on limitations.
Afterwards, we compare GraalSqueak to related systems and
discuss other related work in Section 6. Finally, in Section 7,
we give an overview of future work and conclude the paper.

2 Approach
GraalSqueak is inspired by many different virtual machines.
OpenSmalltalk-VM serves as the reference implementation
because it is the default vm for Squeak/Smalltalk and other
Smalltalk dialects such as Cuis or Pharo. We previously
worked on RSqueak/VM, which is written in the RPython,
PyPy’s language implementation framework. In many ways,
RPython is similar to Truffle [12]. Apart from transferring

our knowledge from one to the other frame, it was also neces-
sary to learn and understand many Truffle specifics. SOMns,
a Newspeak implementation derived from the Simple Object
Machine (som) and written in Truffle, gave us ideas for vari-
ous implementation strategies, for example with regard to
method dispatching or efficient data representations. Since
the core of SqueakJS, another Squeak/Smalltalk vm written
in JavaScript, is maintained in a single file in around 8400
LOC, it was a great resource to understand vm details that are
rather hard to find in all other implementations. Although
outdated, the same is true for Potato, a Java-based vm for an
older version of Squeak/Smalltalk.

2.1 Building the Bytecode Interpreter
After porting the image reader of RSqueak/VM to Java, we
started with the implementation of the bytecode interpreter
for Squeak/Smalltalk. Since the Truffle framework is de-
signed for building AST interpreters, this turned out to be
challenging. Initially, we decided to implement a decompiler
that generates Truffle ASTs from Squeak/Smalltalk bytecode.
In order to be fully compatible with the specification, how-
ever, we shifted away from the decompiler approach and
instead transformed bytecode into linear ASTs. In [17], we
demonstrated that GraalVM and Truffle are able to provide
high run-time performance for this special kind of ASTs,
which are also used in other Truffle interpreters such as
Sulong [22].

2.2 Supporting the Programming Environment
An interpreter is not sufficient to support Squeak/Smalltalk’s
programming environment. The vm also needs to support a
number of essential primitives as well as plugins in order to
draw the user interface (ui) of Squeak/Smalltalk. Therefore,
we needed to implement additional primitives, for example
for process scheduling or object access. This step also en-
abled us to interact with Squeak/Smalltalk’s compiler, which
in turn allowed us to run Squeak/Smalltalk’s SUnit test cases.
From this point on, we were able to continue the develop-
ment of GraalSqueak in a test-first development style. Even-
tually, most kernel tests were passing, so we decided to focus
on supporting the BitBlt and Balloon plugins, which are used
for drawing. This again turned out to be challenging, because
it required windowing and graphics to be used in Truffle —
something other language implementations do not have to
use. Initially, we followed the approach used in RSqueak/VM
for supporting the two rendering plugins: Instead of porting
Balloon and BitBlt to Java, we run their Smalltalk sources
on the vm level, similar to how the vm simulator [15] runs
them in the image. This allowed us to get both plugins work-
ing with relatively low effort. However, it took a significant
time to warm up the simulation code as further discussed in
Section 3.

15

GraalSqueak: Toward a Smalltalk-Based Tooling Platform for Polyglot Programming MPLR ’19, October 21–22, 2019, Athens, Greece

BlockClosureObject

receiver: Object
outerContext: ContextObject
block: CompiledBlockObject
...

NilObject

SINGLETON: NilObject

CharacterObject

value: int

AbstractSqueakObjectWithHash

squeakHash: long

AbstractSqueakObjectWithHashAndClass

squeakClass: ClassObject

ContextObject

truffleFrame: MaterializedFrame
...

CompiledCodeObject

frameDescriptor: FrameDescriptor
literals: Object[]
...

CompiledBlockObject

offset: int

CompiledMethodObject

FloatObject

value: double

ArrayObject

storage: Object

ClassObject

methodDictStable: CyclicAssumption
methodDict: PointersObject
superclass: ClassObject
...
pointers: Object[]

EmptyObject LargeIntegerObject

size: int
value: BigInteger

NativeObject

storage: Object

AbstractPointersObject

pointers: Object[]

PointersObject WeakPointersObject

<<Interface>>
TruffleObjectAbstractSqueakObject

Object

Figure 1. The object model of GraalSqueak. Smalltalk objects mapped to Java primitives have no corresponding implementation
class in the diagram.

2.3 Smalltalk Language Features
Up until this point, some language features were mocked
in the vm to avoid errors. For a correctly working system,
however, it was necessary to support essential languages
features correctly. One challenge was to fully yet efficiently
support Squeak/Smalltalk’s activation records. Activation
records are exposed as Context objects in Smalltalk and can
be used to implement language features such as exception
handling, among others. However, Truffle Frames, which
must be used for managing activation records in the frame-
work, cannot be modified arbitrarily. Although the sender
field of context object can be changed, which allows manipu-
lation of the control flow, the caller of a Truffle frame cannot.
We encountered a similar situation during the implementa-
tion of RSqueak/VM’s bytecode interpreter and were able to
work around this problem in a similar way: We introduced
different representations for Context objects, which allows
GraalVM to apply its optimizations in common cases [18].
Another challenge was to support the allInstances method,
which returns all instances for a given behavior or class. The
problem here is that this functionality is also not supported
by Truffle out-of-the-box and there is not way to instrument
GraalVM’s garbage collectors to collect instances. Again, we
were able to apply a similar implementation strategy used in
RSqueak/VM: Similar to a garbage collector, we walk all ob-
jects in the heap manually. For this, the specialObjectsArray
of Squeak/Smalltalk is used as a root from which we start to

trace all pointers and collect the objects matching the given
class.

3 Implementation
In this section, we highlight noteworthy implementation
details and explain which tools we used for the development
of GraalSqueak. The sources of GraalSqueak are available
on GitHub1.

3.1 Object Model
An important part of a virtual machine is its object model.
This part of a vm not only needs to correctly model the ob-
jects of its guest language. Usually, it also needs to make a
trade-off between run-time performance and memory con-
sumption. In case of GraalSqueak, an efficient object model is
even more important as it must represent Squeak/Smalltalk
objects with Java objects. The OpenSmalltalk-VM, on the
other hand, uses the object format of the image file and can
therefore copy the image file directly into memory.

The most efficient way for representing objects in Truffle
is to use Java primitive data types for specific groups of guest
language objects. In GraalSqueak, we decided to use Java’s
boolean type for representing Squeak/Smalltalk’s true and
false values, char for Character, long for SmallInteger, and
double for SmallFloat objects. We explicitly decided against
int and float as we wanted to target 64-bit systems and the
1https://github.com/hpi-swa/graalsqueak/

16

https://github.com/hpi-swa/graalsqueak/

MPLR ’19, October 21–22, 2019, Athens, Greece Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

ranges of their SmallInteger and SmallFloat exceed those of
int and float. Butmore importantly, with the number of Java
classes used for object representation, the number of Truffle
specializations and consequently code complexity increases,
sometimes dramatically. As an example, if we decided to
use int for 32-bit SmallInteger objects, the node for integer
addition would need four specializations (for supporting the
addition of an int and an int, an int and a long, a long and
an int, as well as a long and a long) plus appropriate guards.
Moreover, Truffle provides a DynamicObject class, which

can be used for representing objects that have a variable
number of members at run-time. This infrastructure is not
only helpful for implementing languages such as JavaScript
or Python. It is also able to optimize the representation of
such objects with the aid of shapes [26]. However, differ-
ent workloads and benchmarks have suggested that Squeak/
Smalltalk does not benefit from this performance optimiza-
tion. Most Squeak/Smalltalk objects have only few slots and
are therefore small in size. Truffle’s DynamicObjectBasic, the
open source implementation of DynamicObject, allocates at
least three long fields and four Object fields. Furthermore,
the size of a Squeak/Smalltalk object is set at allocation time
and cannot change, so we decided to represent them with
Java’s Object[] type instead.
Figure 1 shows GraalSqueak’s object model for all

objects that are not represented by a Java primi-
tive type. The base class for all Squeak/Smalltalk ob-
jects is AbstractSqueakObject, which implements the
TruffleObject interface as required by the framework. All
Squeak/Smalltalk objects provide a hash (see squeakHash

of AbstrctSqueakObjectWithHash). However, certain objects
have an intrinsic hash, such as integers, booleans, or any
of the following special objects and hence squeakHash is un-
necessary. The nil object is, similar to true and false, a
well-known object and can therefore be represented by a
singleton as part of its NilObject class. In Squeak/Smalltalk,
Character objects store code points as an unsigned 30-bit
value. Therefore, the CharacterObject class is needed to rep-
resent characters that exceed the range of Java char.

Similar to the CompiledCode hierarchy in Squeak/Smalltalk,
GraalSqueak uses three classes to represent methods and
blocks. Since these objects contain information needed for
context objects, Squeak/Smalltalk activation records, they
each hold a FrameDescriptor which is required for Truf-
fle’s activation records infrastructure. BlockClosureObject
is used for block closures and holds references to its re-
ceiver, its block, its outer context, and other objects. If re-
quested in Squeak/Smalltalk code, activation records are
allocated on the heap using ContextObject, which refer-
ences a MaterializedFrame provided by the Truffle frame-
work. BoxedFloat64 objects are represented by FloatObject.
These objects only need a squeakHash as well as a value.

Finally, AbstractSqueakObjectWithHashAndClass is for the
group of objects with a dedicated class. ArrayObject repre-
sents arrays and applies optimizations similar to storage
strategies [2]. This improves both memory efficiency as well
as performance as homogeneous arrays of primitive data
types are maintained without boxing. For Squeak/Smalltalk
class objects, GraalSqueak uses ClassObject, which main-
tains different assumptions about the stability of a class. It
also maintains the five slots of a ClassDescription in sep-
arate fields. Moreover, it has a pointers array for addition
slots used for Class, Metaclass, and TraitBehavior (and its
subclasses), all of which are subclasses of ClassDescription.
EmptyObject is used for representing objects without any
slots, while LargeIntegerObject manages its value us-
ing a Java BigInteger for large integer arithmetic. Ob-
jects with instance variables are maintained in instances
of PointersObject or WeakPointersObject depending on
whether their references are hard are weak. Similar to
ClassObject, both store their values in a pointers array
defined in AbstractPointersObject. In addition to the be-
havior of PointersObject, instances of WeakPointersObject
wrap values in a WeakReference to correctly work with
Java’s garbage collector. Finally, NativeObject represents
byte, short, word, or double-word objects. A ByteString, for
example, is stored in storage as a byte[]. Since the class of
such an object can change, its storage must be converted
appropriately as well.
For all leaf classes of the object model, there is a set of

nodes for accessing corresponding objects in a way com-
patible with the Graal compiler and partial evaluation. As
benchmarks in Section 4 will demonstrate, this object model
yields competitive run-time performance.

3.2 Improving Responsiveness
Although Squeak/Smalltalk requires less than 40 different
bytecodes to run, it needs far more primitives (300+) to
be supported by the vm. We implemented most of these
primitives manually by reading through the sources of the
OpenSmalltalk-VM and other vm implementations. As men-
tioned in Section 2, the responsiveness of the programming
environment was quite poor due to the simulated BitBlt
and Balloon plugins, which are used for drawing. Moreover,
warmup was a problem as responsiveness only slowly im-
proved over time. With GraalVM’s memory and CPU pro-
filer, we found out that a lot of objects were allocated as
part of the simulation plus the Graal compiler needed a
significant amount of time to compile the simulation code.
Consequently, we decided to port both plugins to Java. For
this, we translated the source code of Balloon and BitBlt
with the Slang compiler to C and then manually ported the
C code to Java. This took us about three days and as a result,
both ported plugins added approximately 9K SLOC to Graal-
Squeak, which had at this point around 20K SLOC in total.
Nonetheless, this additional code resulted in much better

17

GraalSqueak: Toward a Smalltalk-Based Tooling Platform for Polyglot Programming MPLR ’19, October 21–22, 2019, Athens, Greece

Figure 2. Debugging the parser of Squeak/Smalltalk in
Chrome DevTools.

responsiveness of the programming environment as well as
an improved warmup time. More importantly, it removes
the dependency from the in-image simulation code, which
means that standard images, including the Squeak/Smalltalk
5.2 release image, can be opened in GraalSqueak. In Section 4,
we discuss howwemeasured ui performance of GraalSqueak
in more detail.

3.3 Tools Used to Develop GraalSqueak
The programming experience is not only important for
the users of a language. Since language implementations
are rather complex software projects, appropriate tools
and a good programming experience are just as important.
Since Truffle allowed us to implement a Squeak/Smalltalk
vm in Java, we were able to use sophisticated Java ides
such as Eclipse and IntelliJ IDEA for the development of
GraalSqueak. One key feature to mention is the ability to
debug a running GraalSqueak instance, which is just as
convenient as the custom-built simulation infrastructure
of OpenSmalltalk-VM [15]. For us, this debugging capa-
bility was especially useful for implementing numerous
primitives for Squeak/Smalltalk. While OpenSmalltalk-VM,
RSqueak/VM, and other vms must be recompiled after each
change, we were able to adjust the behavior of a primitive in
the vm at run-time. Moreover, debugging our Java code also
helped to understand and fix misbehavior in the bytecode
interpreter.
However, sometimes it was necessary to debug on the

language or bytecode level rather than on the level of the
language implementation. Before the Squeak/Smalltalk envi-
ronment and its debugger were supported by GraalSqueak,
we were able to use GraalVM’s support for the Chrome De-
bugging Protocol with relatively low effort. Figure 2 shows

a screenshot of the Chrome debugger connected to a Graal-
Squeak instance. In this particular session, we are debugging
through bytecode of Squeak/Smalltalk’s parser. This integra-
tion supports various ways of stepping, evaluation of code,
as well as inspection of call stack and scopes.

Furthermore, it is necessary to understand how the Graal
compiler optimizes code of a guest language. For this,
GraalVM provides many different command-line flags that
enable printing of various debug and compiler information.
In addition, GraalVM also provides the Ideal Graph Visu-
alizer tool. This tool makes it possible to inspect Truffle
asts of a language, call trees, and Graal compiler graphs
for each compilation unit. Figure 3 shows the call graph
of Integer>>benchFib, a recursive implementation of the
Fibonacci algorithm in Squeak/Smalltalk, after the profil-
ing stage. Switching between different stages reveals in-
formation on the costs of nodes and the cost model used
in the Graal compiler [10], the different characteristics of
asts, as well as information on method inlining. In case of
Integer>>benchFib, for example, we can find out that the
compiler applied splitting [28] to the method, which caused
inlining of two levels of the recursion. Hence, the Ideal Graph
Visualizer is an indispensable tool when working on the per-
formance of GraalSqueak.

4 Evaluation
In this section, we evaluate GraalSqueak using two different
types of benchmarks. First, we discuss results of several well-
established language benchmarks and compare GraalSqueak
with other vms. Then, we assess the performance of the
Squeak/Smalltalk programming environment running two
different workloads.

4.1 Benchmarking Language Performance
For comparing GraalSqueak with other vms, we ran the Are
We Fast Yet benchmark suite [11]with ReBench2 andwith dif-
ferent configurations. Each configuration runs 250 iterations
of each benchmark in a fresh process. The first configuration
ran the benchmarks on GraalSqueak using the community
edition of GraalVM, the second using the enterprise edi-
tion of it. The next two configurations ran them on top of
OpenSmalltalk-VM, the state-of-the-art Squeak/Smalltalk
vm, and RSqueak/VM. Lastly, we also ran the benchmark
suite on SOMns. More information on the different versions
used for the benchmarks is listed in Appendix A. We ex-
cluded the CD benchmark because it is currently not fully
functioning on GraalSqueak due to its highly recursive na-
ture. All configurations and benchmarks were executed on
Debian 9 with Linux kernel version 4.9.168-1+deb9u3 and
on the same dedicated hardware, a Dell PowerEdge 2950
(CPU: 2.33 GHz Intel Xeon CPU E5410; Memory: 8x4 GB

2https://github.com/smarr/ReBench

18

https://github.com/smarr/ReBench

MPLR ’19, October 21–22, 2019, Athens, Greece Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

Figure 3. Call tree of Integer>>benchFib after profiling as visualized by GraalVM’s Ideal Graph Visualizer.

0
250
500
750

1,000
1,250
1,500

m
s

Bounce

0
250
500
750

1,000
m
s

DeltaBlue

0

1,000
2,000
3,000
4,000

m
s

Havlak

0
1,000
2,000

4,000

6,000

m
s

Json

0
1,000
2,000
3,000
4,000
5,000

m
s

List

0

200

400

600

800

m
s

Mandelbrot

0
250
500
750

1,000
1,250

m
s

NBody

0
500

1,000
1,500
2,000
2,500

m
s

Permute

0
250
500
750

1,000
1,250
1,500

m
s

Queens

0
250
500
750

1,000
1,250
1,500

m
s

Richards

0
200
400
600
800

m
s

Sieve

0
500

1,000
1,500
2,000

m
s

Storage

0
250
500
750

1,000
1,250

m
s

Towers

SOMns
RSqueakVM
OpenSmalltalk-VM
GraalSqueak-EE
GraalSqueak-CE

Figure 4. Are We Fast Yet benchmark results in milliseconds per vm (lower is better). Each Tukey boxplot [14] visualizes the
quartiles of 200 iterations per vm (after 50 iterations for warmup). The median is highlighted with a symbol. The ends of the
whiskers represent the lowest and highest datum within 1.5 IQR of the corresponding quartile.

19

GraalSqueak: Toward a Smalltalk-Based Tooling Platform for Polyglot Programming MPLR ’19, October 21–22, 2019, Athens, Greece

DDR2-667 MHz SDRAM ECC) with hyper-threading, Intel
Turbo Boost, and Intel P-States disabled.

The benchmarks results are shown in Figure 4. From the
250 iterations of each benchmark, we removed the first 50
iterations to remove warmup behavior from the box plots.
As Figure 8 in Appendix A shows, GraalSqueak warms up
within the first few iterations and all other vms show similar
behavior. Furthermore, we checked that a steady state was
reached during each benchmark.
GraalSqueak always performs better on the enterprise

edition of GraalVM than on its community edition. This
is expected, as the enterprise edition, the commercial ver-
sion of GraalVM, applies additional optimizations and op-
timizes more aggressively in general. However, sometimes
the difference in performance can be significant, especially
when looking at Bounce, Json, and Towers. In the case of
Json, the performance on GraalVM EE is more than three
times better than on GraalVM CE. Out of all 13 benchmarks,
however, GraalSqueak on GraalVM CE is still faster than
OpenSmalltalk-VM in seven benchmarks, while GraalSqueak
on GraalVM EE is faster in 10 of them. Although SOMns is of-
ten much faster than all other vms, GraalSqueak on GraalVM
EE is able to achieve similar performance in six benchmarks.
In the Permute and Queens benchmarks, our vm is even
slightly faster than SOMns on a custom-built GraalVM CE.
RSqueak/VM, on the other hand, is faster than GraalSqueak
on GraalVM EE in Bounce, DeltaBlue, and Mandelbrot. Con-
sidering this is the first time we compare GraalSqueak with
other vms, it is good to see that it already provides competi-
tive language performance.

4.2 Benchmarking the Programming Environment
The performance of the Squeak/Smalltalk programming en-
vironment is just as important as pure language performance.
To evaluate this, we prepared two Squeak/Smalltalk images
with different workloads and measured the frame rate of
the environment. Both of these benchmarks ran on a 13-
inch MacBook Pro from 2018 (CPU: 2.7 GHz Intel Core i7;
Memory: 16 GB 2133 MHz LPDDR3).
In the first image, we ran the bouncing-atoms simula-

tion that comes with Squeak/Smalltalk to measure warmup
and peak performance of the ui. For this, we enabled the
high-performance mode in the preferences of the image. Oth-
erwise, the frame rate is throttled to 50 fps. In a next step, we
opened a BouncingAtomsMorph in the middle of the display
as well as a FrameRateMorph in the menu bar. Furthermore,
we slightly modified the FrameRateMorph, so that it prints the
determined frame rate and the time to the console. A screen-
shot of this benchmark image is shown in Figure 5a. Finally,
we saved the image and opened it again with GraalSqueak on
GraalVM CE and EE as well as with the OpenSmalltalk-VM
for three minutes. During that time, we logged the frame rate
and ensured that the image does not receive any keyboard
or mouse events from the outside.

Figure 5c shows the frame rates of all three vm setups.
GraalSqueak is able to outperform OpenSmalltalk-VM on
GraalVMCEwithin the very first second, and onGraalVMEE
in the third second. In the first half of the second minute, the
frame rate of GraalSqueak stabilizes at 500 fps, which is the
maximum the FrameRateMorph can measure as the morph’s
time resolution is limited to 2 ms. Around the same time,
the Graal compiler no longer optimizes Smalltalk methods,
which suggests that warmup has completed. OpenSmalltalk-
VM, on the other hand, reaches 59.88 fps in the first second
and then stays at a little less than 60 fps for most of the
time. Instead of showing warmup behavior, we see occa-
sional drops in the frame rate down to up to 29.88 fps. We
believe this is due to garbage collection. In GraalSqueak, on
the other hand, we see random drops in performance during
warmup. These drops are much bigger in absolute differ-
ence, which makes the simulation look as if it hangs for a
subsecond. Furthermore, GraalSqueak running on the com-
munity edition of GraalVM warms up slightly faster than
when running on its enterprise edition. This is in line with
how both flavors are advertised: Compared with GraalVM
CE, the enterprise edition performs additional optimizations
and optimizes more aggressively in general, which results
in longer compilation times, but more efficient code.

At this point, it is also important to mention that 500 fps
means the ui was rendered into the display buffer 500 times
per second. The actual window was rendered at a lower
frame rate and in a separate Java-level ui thread. Nonethe-
less, the point of this benchmark was to compare warmup
behavior and peak performance of Squeak/Smalltalk’s ren-
dering machinery. Under normal circumstances, it is more
reasonable to throttle the frame rate, which Squeak/Smalltalk
does by default.

The second ui performance benchmark evaluates a more
realistic workload. For this, we recorded mouse and key-
board events of a user interaction with development tools
using the EventRecorderMorph of Squeak/Smalltalk. Figure 5b
shows a screenshot of what the image looks like during the
interaction: We started with a workspace, then opened the
implementors for a method selector. Next, we opened an
implementation of such a method in a system browser. We
then evaluated code which in turn opened a debugger. Af-
terwards, we closed all windows and repeated the workflow
after waiting for around 20 s, 70 s, and 160 s. These pauses
are meant to give GraalSqueak some additional time for
jit compilation. To make the benchmark as reproducible as
possible, we prepared another image which automatically
replays the recorded input events on startup. Again, we use
a FrameRateMorph to measure the frame rate over time.
The results are shown in Figure 5d. Although the frame

rate is throttle to 50 fps, OpenSmalltalk-VM draws the pro-
gramming environment at around 46 fps when idling. Similar
to the previous benchmark, the state-of-the-art Smalltalk vm

20

MPLR ’19, October 21–22, 2019, Athens, Greece Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

(a) Screenshot of a BouncingAtomsMorph running on GraalSqueak. (b) Screenshot of an ui workflow running on GraalSqueak.

0 30 60 90 120 150 180
0

50
100

200

300

400

500

elapsed time in seconds

fr
am

es
/s

GraalSqueak-CE GraalSqueak-EE OpenSmalltalk-VM

(c) Benchmark results of the bouncing-atoms simulation.

0 60 120 180 240 300 360
0
5
10

20

30

40

50

elapsed time in seconds

fr
am

es
/s

GraalSqueak-CE OpenSmalltalk-VM

(d) Results of the ui workflow benchmark.

Figure 5. Two different ui benchmarks and corresponding benchmark results.

does not show any noticeable warmup behavior. When in-
teracting with different ui elements, the frame rate becomes
somewhat unstable. The lowest frame rate measured for
OpenSmalltalk-VM in this benchmark was 18.69 fps. How-
ever, there is no particular difference with regard to the frame
rate between the different iterations of the workflow.
GraalSqueak on GraalVM CE, on the other hand, is in

fact able to reach 50 fps. At the same time, the performance
cliffs are much more extreme. This manifests in noticeable
pauses when interacting with the ui elements of Squeak/
Smalltalk. In the first iteration of the workflow, for exam-
ple, the frame rate drops down to 1.87 fps, the lowest frame
rate measured, but then recovers to 47.80 fps in the next
measurement. As the following runs of the workflow illus-
trate, GraalSqueak’s behavior slightly improves over time.
Nonetheless, it is unable to provide the same ui respon-
siveness that the OpenSmalltalk-VM can provide even after
five minutes. Apart from that, the ui performance randomly
dropped to 27.13 fps in the 294th second for exactly one

measurement. We can only guess, but we believe this is due
to garbage collection or to further optimizations by the jit
compiler.

5 Discussion
In this section, we show how GraalSqueak can be used as a
tooling platform for polyglot programming and discuss its
limitations.

5.1 Tooling Platform for Polyglot Programming
The goal of GraalSqueak is to provide a tooling platform
for polyglot programming. In particular, we want to use
a Smalltalk environment for prototyping and experiment-
ing because it provides short feedback loops and therefore
faster iterations when incorporating user feedback. For this,
GraalSqueak needs to integrate GraalVM’s polyglot Appli-
cation Programming Interface (api). This api can be used,
for example, to evaluate code of all languages supported by

21

GraalSqueak: Toward a Smalltalk-Based Tooling Platform for Polyglot Programming MPLR ’19, October 21–22, 2019, Athens, Greece

Python Workspace

[’Hello’, 24, object(), {’o’: True}]

ForeignObject[arraySize=4,memberSize=50]

Figure 6. Interactively evaluating Python code in a polyglot
workspace.

ForeignObject[arraySize=4,memberSize=50]...etc...

__eq__ ForeignObject[memberSize=30,executable]
__doc__ ForeignNil
__dir__ ForeignObject[memberSize=32,executable]
__dict__ ’[side-effect]’
__delattr__ ForeignObject[memberSize=30,executable]
__class__ ’[side-effect]’
__bool__ ForeignObject[memberSize=30,executable]

3 ForeignObject[memberSize=24]
2 24
1 ’Hello’
sort ForeignObject[memberSize=32,executable]
reverse ForeignObject[memberSize=30,executable]
remove ForeignObject[memberSize=30,executable]
pop ForeignObject[memberSize=30,executable]
insert ForeignObject[memberSize=30,executable]

(self at: 3) __str__ ’<object object at 0x1d8f7e42>’
inspect

Figure 7. Exploring a Python object in Squeak/Smalltalk.

GraalVM, retrieve various meta-information of objects of
different languages, and to send messages to them.

In a first step, we wanted to make the workspace, inspec-
tor, and explorer tools of Squeak/Smalltalk work with the
polyglot api. A workspace allows interactive evaluation and
exploration of code, while the two other tools are for live
object inspection.
Initially, we added support for the polyglot api through

a new PolyglotPlugin in GraalSqueak. This plugin exposes
every functionality of the underlying api. Exposing this api
directly allows us to experiment with it from within Squeak/
Smalltalk and without modifying our vm. Then, we intro-
duced a new TruffleObject class in Squeak/Smalltalk. All
foreign objects are represented as instances of this class. This
made it possible to map Squeak/Smalltalk’s meta-object pro-
tocol onto the protocol of objects that Truffle provides. In
Truffle, non-primitive objects of a language can have mem-
bers (for dictionary-like objects) or a size (for array-like
objects) or both. Similarly, objects in Squeak/Smalltalk can
have instance variables or/and are indexable. Both concepts
fit together nicely, so the mapping between Smalltalk and
Truffle objects was straightforward to implement.

Next, we subclassed existing Squeak/Smalltalk tools to
create new versions of them that support foreign objects. Fig-
ure 6 shows our PolyglotWorkspace, a subclass of Workspace.
This tool can be used to interactively evaluate code. In this
case, the workspace’s title hints that it is in Python mode and
can therefore be used to run Python code. Instead of eval-
uating code through Squeak/Smalltalk’s compiler, this new
workspace uses the evaluation infrastructure of the polyglot
api. Its context menu allows switching between all languages

supported by the current GraalVM setup. In addition, Truf-
fle uses a special bindings object to facilitate the exchange
of objects between languages. Instead of having to use the
polyglot api, this object is directly accessible in a workspace
as an appropriate and language-specific import statement is
automatically prepended before code evaluation.

Furthermore, instances of TruffleObject are opened in a
new PolyglotInspector when object inspection is requested.
Again, only few modifications were necessary to make it
compatible with non-Smalltalk objects. In Squeak/Smalltalk,
classes maintain information such as the number of instance
variables. Therefore, we needed to override those methods
of Inspector which accessed the class of the inspected ob-
ject for this type of information. Instead, the object itself
must be queried. Python objects, for example, can have ar-
bitrary attributes not defined in their class. Figure 7 shows
an ObjectExplorer opened on the object created in Figure 6.
This tool re-uses the same infrastructure the inspector uses,
so no additional modifications were needed to make it work.
In this example, the explorer shows the list of attributes of
the Python list as they are retrieved through Truffle’s mem-
ber api. The list’s content is displayed below the members,
the tool retrieves all these items through Truffle’s array api.
This basic support for polyglot programming shows the

potential of GraalSqueak. As a first new tool, we also built a
polyglot notebook system [20] and are currently working on
other tools that further support the development of polyglot
applications.

5.2 Limitations
Although GraalSqueak is fully compatible to the Squeak/
Smalltalk 5.2 release image and outperforms OpenSmalltalk-
VM in some benchmarks, it also comes with limitations
which are now discussed in more detail.

Partial Evaluation and Smalltalk An important limi-
tation to mention is the conceptional mismatch between
Squeak/Smalltalk and the way the Graal compiler works. In
Squeak/Smalltalk, there is a language-level process scheduler.
Processes are implemented as green threads. For this to func-
tion correctly, an interrupt handler checks for user interrupts
and semaphores every couple of milliseconds and triggers a
process switch if necessary. Typically, these checks for inter-
rupts are performed after a certain number of message sends
or loop iterations. This way, it is possible to exit an infinite
recursion or an endless loop for example. In GraalSqueak,
however, interrupt checks are only performed as part of
Squeak/Smalltalk’s idle process. Consequently, interrupts
and corresponding process switches cannot be triggered in
any other code and might not even trigger at all if the image
is busy, for example when the bouncing-atoms simulation is
running. The main reason for this is that performing inter-
rupt checks in message sends and loops dramatically reduces
the ability of the Graal jit to perform its optimizations. In

22

MPLR ’19, October 21–22, 2019, Athens, Greece Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

case no interrupt has fired as part of a method activation, for
example, compiled code would be similar to what is compiled
at the moment. However, if a process switch is triggered in
another method or loop and goes through the compiled code,
the current Truffle frame needs to be materialized, which in
turn causes deoptimization. As a result, control-flow often
has to transfer from compiled code back to the interpreter.
Sometimes, the compiled methods are even invalidated and
thrown away. The compiler might decide to re-compile them
at a later point in time, but it is likely that they will also be
deoptimized and invalidated again by a future process switch.
Therefore, the systemwould never reach a steady state as the
Graal compiler is busy optimizing and deoptimizing some
methods over and over again.

One idea to overcome this problem is to use a Java thread
for every Squeak/Smalltalk process. But this makes it very
hard to support arbitrary sender modifications, especially
when the sender of a Smalltalk activation record is set to
another record which is part of a different Java process.

We also tried to exclude certain code paths from compila-
tion which are known to trigger process switches. However,
this only reduced the frequency of invalidations in the com-
piler.
Furthermore, it is unclear if Java continuations, which

are currently being worked on as part of Project Loom [21],
could help to solve this problem. Since continuations are not
an uncommon feature of programming languages, it would
be reasonable to have proper support for them in Truffle.

Memory Consumption and CPU Usage Our bench-
marks from Section 4 focused on run-time performance, but
did not include memory consumption and CPU usage. The
OpenSmalltalk-VM is able to load a Squeak/Smalltalk image
from file directly into memory. GraalSqueak, on the other
hand, needs to allocate Java objects instead. Consequently,
it cannot represent Squeak/Smalltalk objects as memory-
efficient as OpenSmalltalk-VM. For a 60 MB image file, for
example, the Java heap of GraalSqueak is about 220 MB in
size, while OpenSmalltalk-VM is able to run the same image
with a total memory usage of just under 100 MB (including
memory for garbage collection). The default garbage collec-
tors in Java require far more memory to deal with the large
number of object allocations. While the heap is almost four
times larger than the image file, the total memory consump-
tion of GraalSqueak is about 2 GB. Moreover, GraalVM uses
multiple threads for Truffle compilation and they always
need to start from scratch when an image is opened. There-
fore, the CPU usage is, especially at image startup, much
higher compare with OpenSmalltalk-VM and other Smalltalk
vms. Although not supported by Truffle yet, GraalSqueak
would greatly benefit from the ability to persist and re-use
compiled code caches.

With native image, GraalVM also supports ahead-of-time
(aot) compilation of Truffle languages. These native images

provide better startup times and lower memory footprints.
An experimental build of GraalSqueak using this technology
only needs around 700 MB in total to operate the 60 MB
image file. This, however, is still far more compared with
the OpenSmalltalk-VM. Furthermore, GraalSqueak’s perfor-
mance is further reduced due to the basic semi-space copying
garbage collector that currently comes with native image.
In the future, better garbage collector algorithms and more
sophisticated profile-guided optimizations may further im-
prove performance.

Tools and Language Interoperability Furthermore,
there are limitations with regard to language integrations.
The fact that GraalSqueak allows the execution of the
Squeak/Smalltalk programming environment on the
same level as all other languages has many advantages.
But it also means that some features are hard if not
impossible to support. For example, Squeak/Smalltalk’s
debugger implements its stepping functionality by executing
bytecode after bytecode. However, it can only step its
own bytecodes and not bytecodes or even asts of other
languages. Moreover, its ui process must not be interrupted
when the debugger is used. When running and debugging
non-Smalltalk code, the interrupt handler is paused and
therefore, Squeak/Smalltalk’s ui is not functional. Future
work might investigate if it is possible to use Squeak/
Smalltalk’s debugger to debug code running in a different
Java-level thread. In addition, it is unclear what should
happen if non-Smalltalk code calls out to Smalltalk code
in which a ui component is triggered. At the moment,
GraalSqueak detects syntax errors and debugger requests
in this case and throws an error instead. Further, it would
also be possible to do language interoperability between
two different Squeak/Smalltalk images opened on the same
GraalVM. This would allow for interesting experiments but
is currently not correctly supported by GraalSqueak due
to static state on vm level. Also, it is unclear whether the
similar objects from different images (e.g., the nil object)
should have the same identity or not. Lastly, saving an
image in GraalSqueak persists all Squeak/Smalltalk objects
in the memory file format. However, it is unable to persist
heap objects from other languages.

6 Related Work
In this section, we discuss related work and compare it with
GraalSqueak.

OpenSmalltalk-VM and Sista The OpenSmalltalk-
VM [15] is a state-of-the-art Smalltalk vm and the default for
Squeak/Smalltalk. Variations of it include Sista [1] which
stands for “Speculative Inlining SmallTalk Architecture”.
Instead of optimizing code purely on vm-level, the vm
provides an API which can be used from inside a Smalltalk

23

GraalSqueak: Toward a Smalltalk-Based Tooling Platform for Polyglot Programming MPLR ’19, October 21–22, 2019, Athens, Greece

environment to retrieve profiling information. This informa-
tion can then be used to apply optimizations at the image
level, which can also be persisted when saving the image.

RSqueak/VM RSqueak/VM [3] is an alternative inter-
preter for Squeak/Smalltalk and written in the RPython lan-
guage implementation framework. Therefore, it leverages
the same meta-tracing jit compiler that is also used in PyPy
to optimize its bytecode loop. Squimera, a multi-language
runtime system [19], is based on interpreter composition of
RSqueak/VM, PyPy, and Topaz. Similar to GraalSqueak, it
provides tools with support for multiple languages. How-
ever, RPython is not designed to support language interop-
erability and therefore does not provide a polyglot api. In
GraalSqueak, on the other hand, we can build on top of this
api.

SOMns SOMns [13] is an implementation of the Newspeak
language in Truffle. Since it is completely file-based, it does
not provide compatibility with image-based Newspeak and
traditional Smalltalk systems. GraalSqueak, on the other
hand, aims at being fully compatible with existing Squeak/
Smalltalk images. This also includes language features such
as sender modifications or support for various vm plugins.
As a consequence, we needed to find ways to support these
features in Truffle.

Tools for GraalVM GraalVM provides an instrument api,
which allows instrumentation of ast nodes. Based on this
api, an implementation of the Chrome Debugging Proto-
col [4] is maintained as part of GraalVM’s code base. This
integration makes it possible to debug through polyglot code
including Squeak/Smalltalk bytecode using an appropriate
debugger client, such as the Chrome browser or Visual Studio
Code. Similarly, an implementation of the Language Server
Protocol (lsp) is currently under development [23]. Once
officially supported, the lsp integration in Truffle could pro-
vide common features such as code completion and goto
definitions out-of-the-box. For that, language implementa-
tions must provide appropriate hooks, for example to find
the scopes of a language. In an early prototype, we were
able to use this in combination with GraalSqueak for auto-
completing Squeak/Smalltalk code.

Eco Eco is a prototype editor with support for language
compositions [5]. The editor provides languages boxes which
allow nesting of code written in different languages. Its in-
cremental parser is able to continuously parse polyglot code
written in the editor and to maintain an up-to-date ast of
the program. Furthermore, some of this work has focused
on combining the editor with the GraalVM ecosystem [16].

The Eco editor is integrated much deeper with the under-
lying runtime as it uses a special parser while GraalSqueak
supports an entire programming system and makes it possi-
ble to build new tools on top of GraalVM’s polyglot api.

7 Conclusion and Future Work
In this paper, we reported our experience implement-
ing GraalSqueak, a Squeak/Smalltalk vm implementation
written in Truffle. Alternative implementations including
OpenSmalltalk-VM and RSqueak/VM as well as tools pro-
vided by GraalVM helped in this process. Nonetheless, we
needed to find ways to support language-specific features
that are not straightforward to implement in the Truffle
framework. Furthermore, we evaluated the performance of
both the language and the Squeak/Smalltalk programming
environment with different benchmarks. We were able to
demonstrate that GraalSqueak provides competitive perfor-
mance compared with OpenSmalltalk-VM, a state-of-the-art
vm for Smalltalk. Moreover, we demonstrated how this sys-
tem can be used as a tooling platform for polyglot program-
ming and discussed limitations of the current implementa-
tion.

We plan to use GraalSqueak for further research on tools
for polyglot programming. For this, we are currently ex-
ploring approaches for polyglot code editors and different
integrations of apis for language interoperability. These new
ideas and tools for polyglot programming could then be
evaluated by means of user studies. In future work, the lim-
itations of GraalSqueak need to be investigated further. In
particular, it would be interesting to find a proper way to
support Squeak/Smalltalk’s interrupt handler and polyglot
object heaps. Moreover, we believe cross-language bench-
marks are needed to evaluate runtime performance over
language boundaries in polyglot systems such as GraalVM.

A Benchmark Environment and Warmup
Table 1 lists the different configurations of our benchmark
environment. Figure 8 shows the warmup behavior of Graal-
Squeak observed during the execution of the Are We Fast
Yet benchmark suite.

24

MPLR ’19, October 21–22, 2019, Athens, Greece Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld

Table 1. Overview of the configurations of our benchmark environment (cf. Figure 4 and Figure 5).

Configuration Name Git Commit Squeak/Smalltalk Image GraalVM Version

GraalSqueak 9d565518 Squeak5.2 18229 64bit GraalVM CE/EE 19.0.2
OpenSmalltalk-VM 15341b57 Squeak5.2 18229 64bit n/a
RSqueak/VM d33005c8 Squeak5.1 16494 32bit n/a
SOMns 8256b0d5 n/a graal-jvmci-8 1.8.0_181 (1076dfbd)

0 50 150 250
1.29

9.67

s

Bounce

0 50 150 250
0.6

19.64

s

DeltaBlue

0 50 150 250
2.38

42.05

s

Havlak

0 50 150 250
6.19

22.52

s

Json

0 50 150 250
0.57

2.74

s

List

0 50 150 250
0.16

32.8

s

Mandelbrot

0 50 150 250
0.63

4.12

s

NBody

0 50 150 250
1.04

8.87

s

Permute

0 50 150 250
0.3

9.18

s

Queens

0 50 150 250
1.13

21.63

s

Richards

0 50 150 250
0.27

0.91

s

Sieve

0 50 150 250
0.24

8.48
s

Storage

0 50 150 250
1.14

7.95

s

Towers

Figure 8. Runtime in seconds of the first 250 iterations of GraalSqueak on GraalVM CE 19.0.2 running the Are We Fast Yet
benchmark suite (cf. Figure 4). Y-Axis shows maximum and minimum seconds of each data series. Warmup behavior can be
observed in the first few iterations while performance has always reached a somewhat steady state with the 50th iteration
(highlighted with a red line).

Acknowledgments
We gratefully acknowledge the financial support of Oracle
Labs3, HPI’s Research School4, and the Hasso Plattner Design
Thinking Research Program5.

References
[1] Clément Béra, Eliot Miranda, Tim Felgentreff, Marcus Denker, and

Stéphane Ducasse. 2017. Sista: Saving Optimized Code in Snapshots
for Fast Start-Up. In Proceedings of the 14th International Conference on

3https://labs.oracle.com/
4https://hpi.de/en/research/research-school.html
5https://hpi.de/en/dtrp/

Managed Languages and Runtimes (ManLang 2017). ACM, New York,
NY, USA, 1–11. https://doi.org/10.1145/3132190.3132201

[2] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2013. Stor-
age Strategies for Collections in Dynamically Typed Languages. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Ob-
ject Oriented Programming Systems Languages & Applications (OOPSLA
’13). ACM, New York, NY, USA, 167–182. https://doi.org/10.1145/
2509136.2509531

[3] Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas D. Mat-
sakis, Oscar Nierstrasz, Lukas Renggli, Armin Rigo, and Toon Ver-
waest. 2008. Back to the Future in One Week — Implementing a
Smalltalk VM in PyPy. Springer-Verlag, Berlin, Heidelberg, 123–139.
https://doi.org/10.1007/978-3-540-89275-5_7

25

https://labs.oracle.com/
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/
https://doi.org/10.1145/3132190.3132201
https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1007/978-3-540-89275-5_7

GraalSqueak: Toward a Smalltalk-Based Tooling Platform for Polyglot Programming MPLR ’19, October 21–22, 2019, Athens, Greece

[4] Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Christian
Humer, and Thomas Würthinger. 2018. Fast, Flexible, Polyglot Instru-
mentation Support for Debuggers and other Tools. The Art, Science,
and Engineering of Programming 2, Article 14 (2018), 30 pages. Issue 3.
https://doi.org/10.22152/programming-journal.org/2018/2/14

[5] Lukas Diekmann and Laurence Tratt. 2014. Eco: A Language Composi-
tion Editor. In Software Language Engineering (SLE). Springer, 82–101.
https://doi.org/10.1007/978-3-319-11245-9_5

[6] ECMA-335 2012. ECMA-335: Common Language Infrastructure (CLI).
Technical Report ECMA-335. Ecma International, Geneva, Switzerland.
Also ISO/IEC 23271.

[7] Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert Hirschfeld. 2016.
How to Build a High-Performance VM for Squeak/Smalltalk in Your
Spare Time: An Experience Report of Using the RPython Toolchain.
In Proceedings of the 11th Edition of the International Workshop on
Smalltalk Technologies (IWST ’16). ACM, New York, NY, USA, Article
21, 10 pages. https://doi.org/10.1145/2991041.2991062

[8] Bert Freudenberg, Dan Ingalls, Tim Felgentreff, Tobias Pape, and
Robert Hirschfeld. 2014. SqueakJS: A Modern and Practical Smalltalk
That Runs in Any Browser. In Proceedings of the 10th ACM Symposium
on Dynamic Languages (DLS ’14). ACM, New York, NY, USA, 57–66.
https://doi.org/10.1145/2661088.2661100

[9] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language
and Its Implementation. Addison-Wesley Longman, Boston, MA, USA.

[10] David Leopoldseder, Lukas Stadler, Manuel Rigger, Thomas
Würthinger, and Hanspeter Mössenböck. 2018. A Cost Model for a
Graph-based Intermediate-representation in a Dynamic Compiler.
In Proceedings of the 10th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (VMIL 2018). ACM, New
York, NY, USA, 26–35. https://doi.org/10.1145/3281287.3281290

[11] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-
language Compiler Benchmarking: Are We Fast Yet?. In Proceedings
of the 12th Symposium on Dynamic Languages (DLS 2016). ACM, New
York, NY, USA, 120–131. https://doi.org/10.1145/2989225.2989232

[12] Stefan Marr and Stéphane Ducasse. 2015. Tracing vs. Partial Evalu-
ation: Comparing Meta-compilation Approaches for Self-optimizing
Interpreters. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2015). ACM, New York, NY, USA, 821–839.
https://doi.org/10.1145/2814270.2814275

[13] Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonza-
lez Boix, and Hanspeter Mössenböck. 2017. A Concurrency-Agnostic
Protocol for Multi-Paradigm Concurrent Debugging Tools. In Pro-
ceedings of the 13th ACM SIGPLAN International Symposium on Dy-
namic Languages (DLS’17). ACM, 12. https://doi.org/10.1145/3133841.
3133842

[14] Robert McGill, John W. Tukey, and Wayne A. Larsen. 1978. Variations
of Box Plots. The American Statistician 32, 1 (1978), 12–16. https:
//doi.org/10.2307/2683468

[15] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls.
2018. Two Decades of Smalltalk VM Development: Live VM De-
velopment Through Simulation Tools. In Proceedings of the 10th
ACM SIGPLAN International Workshop on Virtual Machines and In-
termediate Languages (VMIL 2018). ACM, New York, NY, USA, 57–66.
https://doi.org/10.1145/3281287.3281295

[16] Sarah Mount and Laurence Tratt. 2017. Simple Visualisation of Profil-
ing Data. Project report.

[17] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2018. Graal-
Squeak: A Fast Smalltalk Bytecode Interpreter Written in an AST
Interpreter Framework. In Proceedings of the 13th Workshop on Imple-
mentation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems (ICOOOLPS ’18). ACM, New York, NY, USA,
30–35. https://doi.org/10.1145/3242947.3242948

[18] Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld.
2019. Efficient Implementation of Smalltalk Activation Records in
Language Implementation Frameworks. In Proceedings of the 3rd In-
ternational Companion Conference on Art, Science, and Engineering of
Programming (Programming ’19). ACM, New York, NY, USA, Article 6,
3 pages. https://doi.org/10.1145/3328433.3328440

[19] Fabio Niephaus, Tim Felgentreff, Tobias Pape, Robert Hirschfeld, and
Marcel Taeumel. 2018. Live Multi-language Development and Runtime
Environments. The Art, Science, and Engineering of Programming 2, Ar-
ticle 8 (2018), 30 pages. Issue 3. https://doi.org/10.22152/programming-
journal.org/2018/2/8

[20] Fabio Niephaus, Eva Krebs, Christian Flach, Jens Lincke, and Robert
Hirschfeld. 2019. PolyJuS: A Squeak/Smalltalk-based Polyglot Note-
book System for the GraalVM. In Proceedings of the 3rd International
Companion Conference on Art, Science, and Engineering of Program-
ming (Programming ’19). ACM, New York, NY, USA, Article 24, 6 pages.
https://doi.org/10.1145/3328433.3328434

[21] Oracle Corporation and/or its affiliates. 2019. Loom - Fibers, Continu-
ations and Tail-Calls for the JVM. https://openjdk.java.net/projects/
loom/

[22] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas
Würthinger, and Hanspeter Mössenböck. 2016. Bringing Low-level
Languages to the JVM: Efficient Execution of LLVM IR on Truffle. In
Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages (VMIL 2016). ACM, New York, NY, USA, 6–15.
https://doi.org/10.1145/2998415.2998416

[23] Daniel Stolpe, Tim Felgentreff, Fabio Niephaus, and Robert Hirschfeld.
2019. Language-independent Development Environment Support for
Dynamic Runtimes. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Symposium on Dynamic Languages (DLS ’19). ACM, New York,
NY, USA, 11. https://doi.org/10.1145/1122445.1122456

[24] Marcel Taeumel, Michael Perscheid, Bastian Steinert, Jens Lincke,
and Robert Hirschfeld. 2014. Interleaving of Modification and Use
in Data-driven Tool Development. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Onward! 2014). ACM, New York, NY, USA,
185–200. https://doi.org/10.1145/2661136.2661150

[25] Thuan L. Thai and Hoang Q. Lam. 2003. .NET Framework Essentials
(3rd ed.). O’Reilly Media.

[26] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Chris-
tian Humer, and Hanspeter Mössenböck. 2014. An Object Storage
Model for the Truffle Language Implementation Framework. In Pro-
ceedings of the 2014 International Conference on Principles and Prac-
tices of Programming on the Java Platform: Virtual Machines, Lan-
guages, and Tools (PPPJ ’14). ACM, New York, NY, USA, 133–144.
https://doi.org/10.1145/2647508.2647517

[27] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017). ACM, New York, NY, USA, 662–676.
https://doi.org/10.1145/3062341.3062381

[28] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. 2012. Self-optimizing AST Inter-
preters. In Proceedings of the 8th Symposium on Dynamic Languages
(DLS ’12). ACM, New York, NY, USA, 73–82. https://doi.org/10.1145/
2384577.2384587

[29] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! 2013). ACM, New
York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

26

https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.1007/978-3-319-11245-9_5
https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1145/2661088.2661100
https://doi.org/10.1145/3281287.3281290
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/2814270.2814275
https://doi.org/10.1145/3133841.3133842
https://doi.org/10.1145/3133841.3133842
https://doi.org/10.2307/2683468
https://doi.org/10.2307/2683468
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/3242947.3242948
https://doi.org/10.1145/3328433.3328440
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.1145/3328433.3328434
https://openjdk.java.net/projects/loom/
https://openjdk.java.net/projects/loom/
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/2661136.2661150
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction and Background
	2 Approach
	2.1 Building the Bytecode Interpreter
	2.2 Supporting the Programming Environment
	2.3 Smalltalk Language Features

	3 Implementation
	3.1 Object Model
	3.2 Improving Responsiveness
	3.3 Tools Used to Develop GraalSqueak

	4 Evaluation
	4.1 Benchmarking Language Performance
	4.2 Benchmarking the Programming Environment

	5 Discussion
	5.1 Tooling Platform for Polyglot Programming
	5.2 Limitations

	6 Related Work
	7 Conclusion and Future Work
	A Benchmark Environment and Warmup
	Acknowledgments
	References

