
Efficient Implementation of Smalltalk Activation Records in
Language Implementation Frameworks
Fabio Niephaus

Hasso Plattner Institute,

University of Potsdam

Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Tim Felgentreff

Oracle Labs

Potsdam, Germany

tim.felgentreff@oracle.com

Tobias Pape

Hasso Plattner Institute,

University of Potsdam

Potsdam, Germany

tobias.pape@hpi.uni-potsdam.de

Robert Hirschfeld

Hasso Plattner Institute,

University of Potsdam

Potsdam, Germany

robert.hirschfeld@hpi.uni-potsdam.de

ABSTRACT
Language implementation frameworks such as RPython or Truffle

help to build runtimes for dynamic languages. For this, they make

certain design decisions and trade-offs upfront to make common

language concepts easy to implement. Because of this, however,

some language-specific concepts may be rather tedious to sup-

port, especially the modification of activation records. For example,

Smalltalk provides reification of activations through context objects.
Since they are used to implement other mechanisms such as excep-

tion handling on the language level, contexts need to be entirely

supported by the underlying runtime. We present an approach for

efficiently implementing Smalltalk context objects in frameworks

that do not support unrestricted modification of activation records.

CCS CONCEPTS
• Software and its engineering → Interpreters; Runtime envi-
ronments; Just-in-time compilers.

KEYWORDS
Squeak, Smalltalk, RPython, Truffle, RSqueak/VM, GraalSqueak

ACM Reference Format:
Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld. 2019.

Efficient Implementation of Smalltalk Activation Records in Language

Implementation Frameworks. In Companion of the 3rd International Con-
ference on Art, Science, and Engineering of Programming (Programming
’19), April 1–4, 2019, Genova, Italy. ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3328433.3328440

1 INTRODUCTION
Virtual machines (vms) for dynamic languages commonly manage

activation records in the form of a stack of call frames. Depending

on the implemented language, a vm may have to expose some of the

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Programming ’19, April 1–4, 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6257-3/19/04.

https://doi.org/10.1145/3328433.3328440

internal data structures it uses for this to the language. Language

implementation frameworks such as Truffle [15] or RPython [1]

provide facilities to manage call frames in an efficient way. Neither

framework, however, supports unrestricted modification of acti-

vation records (such as returning to a different sender) which are

required to implement Smalltalk-80 [5]. We present an approach

for implementing full support for Squeak/Smalltalk context objects

in both Truffle and RPython.

2 BACKGROUND
Smalltalk exposes activation records as first-class objects to the

language. Unlike in many other languages, these context objects
are arbitrarily modifiable and can therefore be used as continua-

tions [14]. Control flow can be manipulated by changing a context’s

instruction pointer or its sender context. This allows, for example,

a language-level implementation of exception handling and other

mechanisms. In Truffle, a dedicated frame implementation must be

used to represent an activation record of the guest language while in

RPython, language implementers have to designate one interpreter-

level class to allow it to be stack-allocated. In the remainder of

this paper, we will use the term “frame” for an activation record in

both frameworks, and “context” in Squeak/Smalltalk. Moreover, the

two frameworks provide a Just-in-time compiler (jit) to improve

runtime performance. A common optimization applied by these

jits is to avoid the allocation of frames on the heap by reusing

the machine stack. For this reason, Truffle differentiates between

virtual andmaterialized frames, which are allocated on the machine

stack and heap, respectively. Furthermore, Truffle allows language

implementers to request the materialization of a virtual frame, con-

sequently forcing it to heap. In RPython, on the other hand, fields

of the frame class must be marked as virtualizable and special ref-

erences (“virtualrefs”) must be used to chain them. Only then the

framework’s jit may decide to allocate these fields on the stack.

3 APPROACH
For an efficient Smalltalk implementation, it is worthwhile to opti-

mize the representation of context objects [2]. In frameworks like

Truffle and RPython, we suggest to use two different representa-

tions: A stack-allocated context is represented by a frame on the

1

https://doi.org/10.1145/3328433.3328440
https://doi.org/10.1145/3328433.3328440


Programming ’19, April 1–4, 2019, Genova, Italy Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

Top frame

Frame

Frame

Bottom frame

Top context

Context

Hybrid context

Last hybrid context

Context

Bottom context

b)
c)

Context

Bottom context

Call stack in framework

a)

Allocated on machine stack

Allocated on stack and heap

Allocated on machine heap

Figure 1: The framework-level frames can be in sync with
contexts (a), or out of sync after a sender has been changed
to a context of the current stack (b) or a different stack (c).

machine stack. In contrast, a heap-allocated context is used when all

fields of the context need to be allocated on the heap, for example

when they are needed outside of the current scope. As an effect

of the framework’s jit, a context may actually be represented in

a hybrid manner in case escape analysis is able to allocate only

some fields of the corresponding frame on the stack. Furthermore,

a complete implementation also needs to support sender modifi-

cations. Both frameworks, however, try to aggressively allocate

frames on the stack for performance reasons. For this, they assume

that senders are immutable which is a valid assumption for most

languages, but not for Smalltalk. In the prevalent case that activa-

tion records are not modified, each context is ideally represented by

a corresponding stack-allocated frame (cf. Figure 1a). The sender

of a context can change, which happens frequently for example

when an exception is handled. In this case, the chain of contexts and

the stack-allocated frames may get out of sync (cf. Figure 1b). The

sender of the current context may be changed to a different parent

context which is further away from the original sender in the chain.

The two stacks can be brought back in sync by unwinding all stack-

allocated frames until the frame representing this parent context is

reached. Moreover, the new sender of a context can also be a new

materialized context from a different stack of contexts (cf. Figure 1c).

Then, all frames of the framework need to be unwound and the

return value needs to be passed to the new context.

4 IMPLEMENTATION
An implementation of our approach has proven to work well

in RSqueak/VM [3], a Squeak/Smalltalk vm written in RPython.

Contexts are represented by ContextPartShadow which has vir-

tualizable attributes and its sender field references another Con-
textPartShadow through a virtualref. To keep Squeak/Smalltalk

contexts in sync with their shadows, we use exceptions to signal

both non-virtual returns and process switches in RPython. Simi-

larly, we have implemented our approach in GraalSqueak [12], a

Truffle-based Squeak/Smalltalk implementation for the GraalVM.

Since Truffle’s VirtualFrames must not be referenced by other ob-

jects, we identify them using thin marker objects that are stored in

the first frame slot. If access to a context object is requested, Graal-

Squeak allocates and pushes a ContextObject which references a

materialized Truffle frame. Further optimization is then left to the

Graal compiler. To find a specific sender, Truffle’s iterateFrames
API is used to determine the corresponding frame. Again, we use

exceptions to keep ContextObjects and Truffle frames in sync. Ad-

ditionally, ContextObjects are fully materialized if they are marked

as escaped, that is when they have been stored in some other object

or when a process switch occurs.

5 DISCUSSION
Following our approach, we were able to implement support for

Squeak/Smalltalk context objects in RSqueak/VM using RPython

and GraalSqueak using Truffle. When contexts are allocated on the

machine stack, the user interface is refreshed at normal frame rates

(around 40 to 50 fps, capped by the programming system) while

otherwise the frame rate is around one or two fps. Moreover, our

approach enables another key feature with regard to contexts: the

chain of contexts can grow, at least in theory, infinitely. Since the

two frameworks are based on Python and Java, it is possible that the

framework-level stack overflows. In both vms, we use the material-

ization mechanism to unwind all frames just before this happens,

so that context chains are supported that exceed the framework’s

stack size. Implementing our approach in RSqueak/VM required

fewer optimizations and was relatively straightforward compared

with Truffle, which matches previous observations [8]. In case of

sender modifications, for example, we had to avoid materialization

of contexts as much as possible in GraalSqueak. Instead, we had to

carefully use Truffle’s iterateFrames frame-walking facility which

triggers deoptimizations in the jit under poorly documented condi-

tions. This made parts of our approach cumbersome to implement.

6 RELATEDWORK
The vm used for VisualWorks 5i [9] also uses different context rep-

resentations and applied further optimizations to reduce run-time

overhead. The OpenSmalltalk vm [11] is the state-of-the-art vm

for Squeak/Smalltalk, is still under active development, and uses

“married contexts” [10], which are also used in SqueakMaxine [13].

The original “interpreter” vm [7], SqueakJS [4], and Potato [6] for

Squeak/Smalltalk always allocate contexts on the heap. None of

these vms are written in and constrained by a language implemen-

tation framework. The OpenSmalltalk vm which optimizes context

objects is significantly more complex (300k+ SLOC) compared with

RSqueak/VM (≈22k SLOC) and GraalSqueak (≈36k SLOC), which

in turn are more complex than SqueakJS (≈8k SLOC) and Potato

(≈6k SLOC). These two vms and the interpreter vm, however, are

significantly slower in performance compared with our vms.

7 CONCLUSION AND FUTUREWORK
We presented an approach for implementing full support for

Smalltalk context objects in Truffle and RPython, both of which

do not support unrestricted alterations of activation records out of

the box. Our implementation strategy played an important role in

making the Smalltalk programming system usable. In the future, it

would be interesting to see how our approach can be incorporated

into language implementation frameworks as well as to measure

performance implications in more detail.

2



Efficient Smalltalk Activation Records in Language Implementation Frameworks Programming ’19, April 1–4, 2019, Genova, Italy

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of Oracle Labs

1
,

HPI’s Research School
2
, and the Hasso Plattner Design Thinking

Research Program
3
.

REFERENCES
[1] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. 2007.

RPython: A Step Towards Reconciling Dynamically and Statically Typed OO

Languages. In Proceedings of the 2007 Symposium on Dynamic Languages (DLS
’07). ACM, New York, NY, USA, 53–64. https://doi.org/10.1145/1297081.1297091

[2] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implementation of the

Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL ’84). ACM, New York, NY, USA,

297–302. https://doi.org/10.1145/800017.800542

[3] Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert Hirschfeld. 2016. How

to Build a High-Performance VM for Squeak/Smalltalk in Your Spare Time: An

Experience Report of Using the RPython Toolchain. In Proceedings of the 11th
Edition of the International Workshop on Smalltalk Technologies (IWST ’16). ACM,

NewYork, NY, USA, Article 21, 10 pages. https://doi.org/10.1145/2991041.2991062

[4] Bert Freudenberg, Dan H.H. Ingalls, Tim Felgentreff, Tobias Pape, and Robert

Hirschfeld. 2014. SqueakJS: A Modern and Practical Smalltalk That Runs in Any

Browser. In Proceedings of the 10th ACM Symposium on Dynamic Languages (DLS
’14). ACM, New York, NY, USA, 57–66. https://doi.org/10.1145/2661088.2661100

[5] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman, Boston, MA, USA. The Blue Book.

[6] Dan Ingalls, Frank Feinbube, RobertWierschke,Michael Haupt, Robert Hirschfeld,

Robert Krahn, and Victor Rodriguez. 2008. Potato VM. https://sourceforge.net/

projects/potatovm/

[7] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. Back

to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself. In

Proceedings of the 12th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA ’97). ACM, New York, NY, USA,

318–326. https://doi.org/10.1145/263698.263754

[8] Stefan Marr and Stéphane Ducasse. 2015. Tracing vs. Partial Evaluation: Compar-

ing Meta-compilation Approaches for Self-optimizing Interpreters. In Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2015). ACM, New York, NY,

USA, 821–839. https://doi.org/10.1145/2814270.2814275

[9] Eliot Miranda. 1999. Context Management in VisualWorks 5i. Technical Report.
ParcPlace Division, CINCOM, Inc.

[10] Eliot Miranda. 2011. An Arranged Marriage. http://www.mirandabanda.org/

cogblog/2011/03/04/an-arranged-marriage/

[11] Eliot Miranda and contributors. 2019. OpenSmalltalkVM. https://github.com/

OpenSmalltalk/opensmalltalk-vm

[12] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2018. GraalSqueak: A

Fast Smalltalk Bytecode Interpreter Written in an AST Interpreter Framework. In

Proceedings of the 13th Workshop on Implementation, Compilation, Optimization
of Object-Oriented Languages, Programs and Systems (ICOOOLPS ’18). ACM, New

York, NY, USA, 30–35. https://doi.org/10.1145/3242947.3242948

[13] Tobias Pape, Arian Treffer, Robert Hirschfeld, andMichael Haupt. 2013. Extending
a Java Virtual Machine to Dynamic Object-oriented Languages.

[14] John C. Reynolds. 1993. The Discoveries of Continuations. Lisp Symb. Comput. 6,
3-4 (11 1993), 233–248. https://doi.org/10.1007/BF01019459

[15] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles

Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.

2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, New York, NY, USA, 187–204. https://doi.org/10.

1145/2509578.2509581

1
https://labs.oracle.com/

2
https://hpi.de/en/research/research-school.html

3
https://hpi.de/en/dtrp/

3

https://doi.org/10.1145/1297081.1297091
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1145/2661088.2661100
https://sourceforge.net/projects/potatovm/
https://sourceforge.net/projects/potatovm/
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/2814270.2814275
http://www.mirandabanda.org/cogblog/2011/03/04/an-arranged-marriage/
http://www.mirandabanda.org/cogblog/2011/03/04/an-arranged-marriage/
https://github.com/OpenSmalltalk/opensmalltalk-vm
https://github.com/OpenSmalltalk/opensmalltalk-vm
https://doi.org/10.1145/3242947.3242948
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://labs.oracle.com/
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Implementation
	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

