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Abstract
Language implementation frameworks aim to provide
everything that is needed to build interpreters, simplify
the process by making certain design decisions in advance,
and suggest implementation strategies to virtual machine
creators. Truffle, the language implementation framework
for the GraalVM, is designed for building Abstract Syntax
Tree interpreters and the process of doing so is well docu-
mented. However, although less documented, Truffle can also
be used to implement bytecode interpreters. This approach
requires additional hints to be passed into the compiler to
gain good performance.
In this paper, we compare two Truffle interpreters for

Squeak/Smalltalk, one using an ast implementation approach
and the other executing bytecodes.While both run at roughly
three times the speed of the standard Squeak/Smalltalk vir-
tual machine, both represent different trade-offs in imple-
mentation strategies for interpreters in Truffle. We compare
these trade-offs and discuss the advantages and disadvan-
tages of the different approaches.
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1 Introduction and Background
Programming language implementation frameworks have
become more and more popular as they allow language im-
plementers to use another high-level language and useful
components, such as garbage collectors or caching mecha-
nisms, to implement virtual execution environments for dy-
namic languages. These frameworks, however, often enforce
certain implementation styles and are usually designed to
support a specific kind of interpretation model. RPython [1],
a language implementation framework maintained as part of
the PyPy project [10], for example, is mainly used to imple-
ment bytecode interpreters, because its tracing just-in-time
(jit) compiler is most suited to operate on bytecode. Ora-
cle’s Truffle framework [14], on the other hand, is designed
for implementing Abstract Syntax Tree (ast) interpreters
and its jit compiler applies ast node rewriting and partial
evaluation to significantly increase run-time performance of
corresponding interpreters. Consequently, most languages
implementations in Truffle are ast-based.
However, some language specifications include a well-

defined bytecode set and are therefore designed to run on
bytecode interpreters. For this reason, Truffle has optimiza-
tion mechanisms specifically for building bytecode-based
interpreters. These are used, for example, in Sulong [9], a
Truffle-based interpreter for LLVM bitcode. The process and
pitfalls of implementing bytecode interpreters in Truffle is
not well documented which is one motivation for this paper.

Squeak/Smalltalk [6] is a Smalltalk dialect derived from the
Smalltalk-80 language specification [5]. OpenSmalltalkVM [8],
the default Virtual Machine (vm) for Squeak/Smalltalk, is
bytecode-based and features a mostly handwritten jit com-
piler. RSqueak/VM [3, 4] is an alternative vm for it writ-
ten in RPython. With SOMns [7], a Smalltalk-like inter-
preter is already implemented in Truffle. However, it oper-
ates entirely on asts as it is not image-based like traditional
Smalltalk-80 systems and can therefore be well optimized by
the GraalVM [14], which in turn is the vm on which Truffle
language interpreters are designed to run.
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Figure 1. Architecture of an ast interpreter for Squeak

In this paper, we present and compare both the Truffle-
based implementation of an ast interpreter as well as a
bytecode interpreter for Squeak/Smalltalk. We report our ex-
periences implementing the different interpretation models
in Truffle, discuss implementation pitfalls, and compare the
performance of the different interpreters with two bench-
marks.

2 Implementations
In this section, we present two different approaches for imple-
menting Squeak/Smalltalk interpreters in Truffle. The source
code of the GraalSqueak interpreter variations is available
on GitHub1.

AST Interpreter Since Truffle and the Graal compiler op-
erate on asts, the natural way of implementing a Squeak/
Smalltalk interpreter in Truffle is to write an ast interpreter.
However, Squeak/Smalltalk is traditionally bytecode-based,
with its compiler written in Squeak itself and only the byte-
codes, not the asts or sources stored in the image, are visible
to the vm. Therefore, these bytecode streams need to be
transformed into appropriate ast nodes again.
Figure 1 gives an overview of the architecture of this im-

plementation. Each Smalltalk method is first parsed and com-
piled to bytecode inside the Smalltalk environment. Upon
loading an image, the Truffle interpreter only has access to
compiled code objects which hold Squeak/Smalltalk byte-
code.
To transform the bytecode into Truffle ast nodes, we

have ported Squeak/Smalltalk’s decompiler to Truffle. This
implementation approach was straightforward, but did not
yield great performance. The key optimization to gain good

1https://github.com/hpi-swa/graalsqueak/releases
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Figure 2. A bytecode stream and a sequence of ast nodes

performance (and the only deviation from the Smalltalk de-
compiler) was for us to reconstruct loop nodes. By default,
the decompiler would turn every loop into a while node with
the loop condition in the body and a break out of the loop if
the condition becomes false. In Truffle, on the other hand,
there is a dedicated LoopNode for which the runtime provides
special optimization strategies. To optimize loops well, we
had to modify the decompilation to split the condition from
the body appropriately and use Truffle’s LoopNodes. This
significantly improved the performance of the interpreter
on the GraalVM.

Bytecode Interpreter Implementing a bytecode interpreter
in Truffle is not as intuitive and still requires generating ast
nodes. However, these asts are simply linked lists with back
pointers. We create one node for each bytecode and generate
a chain of ast nodes as depicted in Figure 2. In Smalltalk,
each of these nodes has either exactly one or, in the case of
a conditional jump, two successors because these jumps are
the only way to branch in Squeak/Smalltalk.

void executeLoop(VirtualFrame frame) {
int pc = 0;
while (pc >= 0) {
pc = bytecodeNodes[pc].executeInt(frame);

}
}

Listing 1. A simple loop for interpreting sequences of ast
nodes

Consequently, we can implement an interpreter loop as
shown in 1. However, running this loop with Truffle on the
GraalVM gives rather low performance.

As Rigger et. al [9] have shown, the Graal compiler needs
additional information to efficiently execute bytecode loops.
Their optimization encodes the possible successor program
counters in an immutable array of Java primitive integers
on each bytecode node. This way, the compiler knows that
most bytecode nodes have exactly one possible successor
node, and can optimize these together.
However, Graal does not automatically detect control-

flow cycles in such a loop. Instead, it reports escaping frame

https://github.com/hpi-swa/graalsqueak/releases
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1 @ExplodeLoop(kind = ExplodeLoop.LoopExplosionKind.MERGE_EXPLODE)
2 void executeLoop(VirtualFrame frame) {
3 CompilerAsserts.compilationConstant(bytecodeNodes.length);
4 int pc = 0; int backJumpCounter = 0;
5 try {
6 while (pc >= 0) {
7 CompilerAsserts.partialEvaluationConstant(pc);
8 AbstractBytecodeNode node = bytecodeNodes[pc];
9 if (node instanceof ConditionalJumpNode) {
10 ConditionalJumpNode jumpNode = (ConditionalJumpNode) node;
11 boolean condition = jumpNode.executeCondition(frame);
12 if (CompilerDirectives.injectBranchProbability(
13 jumpNode.getProbability(JUMP), condition)) {
14 int successor = jumpNode.getJumpSuccessor();
15 if (CompilerDirectives.inInterpreter()) {
16 jumpNode.increaseProbability(JUMP);
17 if (successor <= pc) backJumpCounter++;
18 }
19 pc = successor; continue;
20 } else {
21 int successor = jumpNode.getNoJumpSuccessor();
22 if (CompilerDirectives.inInterpreter()) {
23 jumpNode.increaseProbability(NO_JUMP);
24 if (successor <= pc) backJumpCounter++;
25 }
26 pc = successor; continue;
27 }
28 } else if (node instanceof UnconditionalJumpNode) {
29 UnconditionalJumpNode jumpNode = (UnconditionalJumpNode) node;
30 int successor = jumpNode.getJumpSuccessor();
31 if (CompilerDirectives.inInterpreter()) {
32 if (successor <= pc) backJumpCounter++;
33 }
34 pc = successor; continue;
35 } else { pc = node.executeInt(frame); }
36 }
37 } finally {
38 LoopNode.reportLoopCount(this, backJumpCounter);
39 }
40 }

Listing 2. Bytecode loop with hints for the Graal compiler

errors when trying to unroll the loop. This is also a problem
for other bytecode interpreters such as Sulong, but was not
further described by Rigger et. al. In order to inform Truffle
about our bytecode interpreter, we had to add additional
compiler annotations and hints. These are now explained in
more detail.

Figure 2 shows the revised version of the interpreter loop
with appropriate Truffle hints for the Graal compiler. The
@ExplodeLoop annotation in line 1 instructs the compiler to

unroll loops. In our case, it uses the MERGE_EXPLODE strategy
which is designed especially for bytecode interpreters as it
tries to explode all loops while merging copies of the loop
body that have identical state. Then we assert that the num-
ber of bytecodes is constant per method instance (line 3) and
ensure that the program counter is reduced to a constant
during the partial evaluation phase (line 7). After fetching
the next node for the current program counter, there are
three options how control flow can continue.
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First, if the node is a conditional jump node, the condi-
tion is being executed (line 11). Each conditional jump node
maintains a probability value that represents how often the
condition is true or false. Truffle provides an API to inject
such values as a branch probability (line 12 and 13) which
further supports the Graal compiler. Afterwards, the next pro-
gram counter is determined depending on whether the con-
dition was true or false (line 14 and 21). Additionally and
only if executed in the interpreter, the corresponding branch
probability is increased and if the successor is smaller than
the current program counter, a backJumpCounter is incre-
mented. This backJumpCounter is reported to the compiler
through the LoopNode::reportLoopCount API on method
exit as part of the finally block in line 38. This information
is used in Truffle’s optimization heuristics to further improve
the compilation process. Lastly, the successor becomes the
current program counter and the interpreter loop continues
with the next bytecode.

Second and in the case of an unconditional jump, the next
program counter is fetched and analyzed for backward jumps
if running interpreted (line 29 to 34).

Otherwise, the current node is fully executed to determine
the next program counter (line 35), just like it was in the
simple version of the interpreter loop.

The Javadocs for the different Truffle hints provide further
information on how they work or can be used, yet are unable
to fully explain how to use them in combination with others
or how exactly the Graal compiler benefits from them.

3 Evaluation
To assess the performance of our Truffle-based interpreters
for Squeak/Smalltalk, we have implemented all bytecodes
and primitives required to run Squeak’s tinyBenchmarks.
This micro-benchmark suite is often used to measure and
compare the performance of different hardware platforms
and Squeak vms [3, 12] and consists of two benchmarks:
The first one is bytecode-heavy as it allocates, fills, and
reads from a large array. The other one is a recursive Fi-
bonacci benchmark and therefore send-heavy. Additionally,
tinyBenchmarks adjusts both benchmarks so that they run
at least one second in order to produce more stable results.
Although the results should be taken with a grain of salt
as they do not represent a wide range of common opera-
tions, we believe they are a good indicator for the overall
performance of our different interpreter approaches.
We ran the benchmarks on a 15-inch MacBook Pro

from Mid 2015 (CPU: 2.5 GHz Intel Core i7; Mem-
ory: 16 GB 1600 MHz DDR3). For the ast interpreter,
we used commit 8126c1b of GraalSqueak and ac530ac
for the bytecode interpreter with Truffle hints. More-
over, we copied the latter version of GraalSqueak and
replaced executeLoop(VirtualFrame frame) defined on
SqueakMethodNode with the code from 1 to remove all

compiler hints. We also ran the benchmarks on other
Squeak/Smalltalk vms, a recent OpenSmalltalkVM (tag
201804030952), the fastest stable vm for Squeak/Smalltalk,
as well as RSqueak/VM (commit d33005c). Please note that,
compared to these complete vm implementations, our inter-
preters do not have an interrupt handler and do not support
Smalltalk context objects which might have a negative im-
pact on performance when implemented. Furthermore, we
used 100 iterations per run and all benchmarks took a little
less than an hour to run in total. Nonetheless, we observed
that all results stabilized within the first ten iterations.
The left half of Figure 3 shows the benchmark results of

the bytecode-heavy micro-benchmark. The results of the
OpenSmalltalkVM can be treated as the baseline as it is
the default vm for Squeak/Smalltalk. It performs relatively
stable at around three billion bytecodes per second while
RSqueak/VM is able to process approximately 2.1 billion
bytecodes per second. When looking at the results of the
ast-based GraalSqueak implementation, we notice warmup
behavior. After around two iterations, performance reaches
a somewhat stable state. At the same time, it outperforms
the OpenSmalltalkVM by approximately 3.06x. The bytecode
interpreter, on the other hand, does not show this warmup
behavior and is, with an average of ten billion bytecodes per
second, the fastest vm. Without hints, however, Truffle is
unable to perform its optimizations due to escaping frames
and the otherwise identical interpreter performs very poorly.
The other half of Figure 3 shows the recursive Fibonacci

benchmark. RSqueakVM performs much worse compared
to the OpenSmalltalkVM. Although the GraalSqueak inter-
preters still outperform it, the relative difference is not as
big as in the previous benchmark. The ast interpreter is ap-
proximately 1.42x faster and the bytecode interpreter with
Truffle hints around 1.47x. Again, the performance of the
bytecode interpreter without hints is very low compared to
all other vms.
Since the performance gap between the bytecode inter-

preter with and without Truffle hints is approximately three
orders of magnitude large, we zoom in on the “GS-hints”
results from Figure 4 and add two additional data series: the
results of the bytecode interpreter with and without hints
running fully interpreted on a standard JDK 1.8.0_144 and
without the Graal compiler. Figure 4 shows the results and
suggests that the hint-less GraalSqueak bytecode interpreter
on the GraalVM performs roughly the same as the inter-
preted version with hints on the Java Virtual Machine (jvm).
Compared to these two, the bytecode interpreter without
Truffle hints performs better on the jvm. Therefore, these ad-
ditional Truffle annotations introduce ameasurable overhead
which negatively impacts interpretation performance.
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Figure 3. tinyBenchmarks results of different Squeak/Smalltalk vms
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Figure 4. tinyBenchmarks results of the hint-less bytecode interpreter compared to pure interpreter performance on JDK8

4 Related Work
Sulong Sulong [9] is a bytecode-based interpreter for LLVM
bitcode, written in Truffle, and maintained by Oracle Labs
as part of the GraalVM project. Its bytecode loop employs
similar Truffle hints to support the compiler in optimizing
run-time performance.

TruffleRuby TruffleRuby [13] is a Truffle implementation
of the Ruby programming language. Similar to our ast-based
GraalSqueak implementation, TruffleRuby uses a custom
parser for generating Truffle asts. Since Ruby 1.9, the default
runtime for Ruby is YARV [11] which operates on bytecode.

OpenSmalltalkVM and Sista The OpenSmalltalkVM [8]
is the default vm for Squeak/Smalltalk and variations of
it include Sista [2] which stands for “Speculative Inlining
SmallTalk Architecture”. Instead of optimizing code purely
on vm-level, the vm provides an API which can be used
from inside a Smalltalk environment to retrieve profiling
information. This information can then be used to apply

optimizations on image-level which can also be persisted
when saving the image.

RSqueak/VM RSqueak/VM [3] is an alternative interpreter
for Squeak/Smalltalk and written in the language implemen-
tation framework RPython. Therefore, it leverages the same
meta-tracing jit compiler that is also used in PyPy to opti-
mize its bytecode loop.

SOMns SOMns [7] is an implementation of the Newspeak
language in Truffle. Since it is completely file-based, it does
not provide compatibility with image-based Newspeak and
traditional Smalltalk systems. Our GraalSqueak interpreters,
on the other hand, are designed to be compatible with ex-
isting Squeak/Smalltalk images. This also includes language
features such as sender modifications or support for various
vm plugins.
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5 Conclusion and Future Work
In this paper, we presented two different approaches for
implementing interpreters in the Truffle language implemen-
tation framework given a language defined through and/or
with bytecode as its interchange format such as Squeak/
Smalltalk.

To create an ast interpreter for such a language requires
a custom decompiler which is able to generate Truffle asts
from bytecode. Besides the decompiler, the main require-
ment to achieve good performance on Truffle is that the
decompiler needs to detect loops and emit appropriate Truf-
fle LoopNodes.

A bytecode interpreter, on the other hand, does not need a
decompiler, which reduces the complexity of the interpreter.
To achieve good execution performance, however, the byte-
code loop needs to be extended with several runtime hints
to allow Truffle and the Graal compiler to successfully apply
appropriate optimizations.
Our initial benchmarks show that a bytecode interpreter

can be just as fast as an ast-based implementation in Truffle
after warmup. Interpreted performance, on the other hand,
is negatively impacted by additional Truffle hints, suggesting
further optimization potential.
In the future, we want to extend GraalSqueak with full

support for Squeak/Smalltalk context objects and more prim-
itives as well as vm plugins, so that the entire programming
environment can be used as intended.With a complete imple-
mentation of Squeak/Smalltalk in Truffle, the GraalVM also
allows for interesting experiments in the area of ployglot
programming.
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