Squeak Makes a Good Python Debugger

Bringing Other Programming Languages into Smalltalk’s Tools

Fabio Niephaus

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany
fniephaus@acm.org

Tobias Pape
Hasso Plattner Institute, University of Potsdam
Potsdam, Germany

tobias.pape@hpi.de
ABSTRACT

Interactive debuggers are indispensable in many software devel-
opment scenarios. However, they are often hard to extend and
more importantly, their capabilities are limited to an application
programming interface (Ap1) provided by the runtime executing
the corresponding programming language.

We propose an approach that allows to use the live tools of a
Smalltalk environment for other programming languages. The ap-
proach is based on interpreter-level composition, ultimately making
a full-fledged integrated development environment (IDE) part of
the language execution process. This allows to directly control in-
terpreters of foreign languages from Smalltalk. It also enables tool
reuse and provides the ability to rapidly build new tools.

As an example, we demonstrate how we have combined Squeak/
Smalltalk and PyPy’s Python implementation. We then reused
Squeak’s debugger, so that it enables edit-and-continue style de-
bugging of Python applications — something that is currently not
supported by Python’s PDB or any Python 1DE.

CCS CONCEPTS

« Software and its engineering — Integrated and visual devel-
opment environments; Software testing and debugging; Virtual ma-
chines;

KEYWORDS

Smalltalk, Python, debuggers, integrated environments, virtual ma-
chines

ACM Reference format:

Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld. 2017.
Squeak Makes a Good Python Debugger. In Proceedings of Programming
Experience Workshop, Brussels, Belgium, April 2017 (PX’17), 8 pages.

DOL: 10.475/123_4

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PX’17, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
123-4567-24-567/08/06. .. $15.00

DOI: 10.475/123_4

Tim Felgentreff
Hasso Plattner Institute, University of Potsdam
Potsdam, Germany
tim.felgentreff@hpi.de

Robert Hirschfeld

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany

robert.hirschfeld@hpi.de
1 BACKGROUND AND MOTIVATION

Programming environments play a central role in software develop-
ment. Developers have come to expect language-specific amenities
from their development environments, ranging from syntax high-
lighting, refactoring support, context-specific auto-completion, to
interactive debugging and live code reloading. Most environments
offer at least some of these features. Furthermore, there is a re-
newed push in current research to allow developers to use live,
run-time data that can be explored and manipulated to understand
and extend software systems [6, 27], through edit-and-continue
style debugging and coding against live data. However, efforts to-
wards that goal are often tied to specific domains or programming
languages (or both).

IDE systems such as Eclipse or NetBeans try to provide a frame-
work to build development tools for a variety of programming lan-
guages. Their architecture is set up to minimize the dependency
on any particular language feature, to support a range of different
languages. This has the advantage that code can be reused between
tools for different languages, at the cost of not integrating deeply
with any language.

Most combinations of 1DEs and runtimes share a common de-
bugging architecture (see Figure 1a). When the program under de-
velopment is running, the tools connect to it through some runtime
API to offer inspection and debugging depending on the underlying
capabilities of the runtime. For example, the Java Virtual Machine
(7vMm) Tools Interface (jvmTI) offers read-only! inspection capabil-
ities for a running Java program. It can stop and inspect, force early
returns with a particular return value, or set local variable values
in the top frame. The HotSpot virtual machine (vm) also allows
restarting a frame that is already running and hot code swapping for
frames that are not active on the stack. Microsoft’s Common Lan-
guage Runtime (cLRr) has a dedicated Interface (ICorDebug) that
allows edit-and-continue active stack frames? and ICorDebugEval
allows the IDE to inject and execute arbitrary code?

An 1DE constructed in this way can only reflect on the execu-
tion state through the runtime Ap1. To inspect and modify objects,
representations for them are reproduced in the context of the 1DE.
Objects and properties that cannot be transferred through the run-
time API, cannot be inspected or modified.
Uhttps://docs.oracle.com/javase/8/docs/platform/jvmti/jvmtihtml

Zhttps://msdn.microsoft.com/en-us/library/ms231220.aspx
Shttps://blogs.msdn.microsoft.com/jmstall/2006/01/04/partition-of-icordebug/

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://msdn.microsoft.com/en-us/library/ms231220.aspx
https://blogs.msdn.microsoft.com/jmstall/2006/01/04/partition-of-icordebug/

PX’17, April 2017, Brussels, Belgium

Process

Runtime API
VM -

(a) Eclipse is separate from the language process.

Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

Process

IDE

(b) Squeak/Smalltalk is part of the language process.

Figure 1: Architectural comparison of Eclipse and Squeak/Smalltalk.

On the other hand, live programming systems, such as Squeak/
Smalltalk, are well-suited to provide full access to the runtime state
and provide developers with means to adapt their tools at devel-
opment time according to their needs. In such systems, the IDE is
entirely contained in the running process, and thus has full reflec-
tive access to the state of the system and can directly inspect and
manipulate all objects therein, as well as provide edit-and-continue
style debugging (see Figure 1b).

However, due to the deep integration with the runtime, tool
implementations in live, always-on programming environments
like Squeak are very language-specific, and even the means to write
tools do not carry over very well. Thus, even those tools that have
been reproduced for other programming systems have been written
from ground up.

We propose an architecture for constructing a multi-language
runtime that attempts to combine the benefits of both approaches:
a common code-base for tool developers and live, immediate access
to the running application for inspecting and manipulating state.

Our contributions are as follows:

e An architecture to compose multiple languages within the
same live programming environment with reflective capa-
bilities for full execution control from within the runtime.

e An implementation of said architecture using PyPy [21]
and RSqueak/VM [5, 12].

e An implementation of a debugger that works for both,
Python and Squeak/Smalltalk.

In Section 2 we introduce our approach. Then, we demonstrate
how this approach can be implemented with an example in Sec-
tion 3. Afterwards, we discuss advantages and disadvantages of
our approach in Section 4. Related work is then mentioned in Sec-
tion 5. Finally in Section 6, we conclude the paper and describe
future work.

2 APPROACH

Various interpreted programming languages provide only very lim-
ited debugging support which can be a burden for developers when
trying to understand a misbehavior that occurs in their application.
On the other hand, Smalltalk is not only a programming language,
but also an 1DE. This means, that the IDE is an actual part of the
process running Smalltalk. This gives developers full control over
the running applications and therefore allows for very comprehen-
sive debugging tools.

We propose the idea to use a Smalltalk environment as an I1DE
for other languages and perform the integration on interpreter-
level. This way, our architecture avoids the n-to-m problems of
interfacing multiple languages by mapping all languages into the
language of the live environment. This can be achieved by com-
posing a Smalltalk interpreter with another language’s interpreter.
Interpreter composition is especially convenient when both lan-
guages are implemented in the same interpreter framework, such
as RPython [1], as demonstrated in Section 3.

However, this kind of composition states the problem of how
to run two or more interpreters at the same time. Smalltalk has a
concept of processes which can be scheduled dynamically [14]. As
we demonstrate later, it is possible to make the execution of a non-
Smalltalk interpreter part of a Smalltalk-level process. This way,
the Smalltalk scheduler decides when to continue with the other
interpreter loop, which ensures that the developer can interact with
the Smalltalk environment at the same time.

In such a setup, it is now possible to control interpreters of a for-
eign language with tools written in Smalltalk. For this to work, the
vM needs to be extended in such a way that it exposes a number of
interpreter-controlling primitives which can then be called accord-
ingly from within a Smalltalk environment. In order to be able to
execute a program written in another language, primitives for ex-
ample need to exist which provide an entry point as well as an end
point for the corresponding interpreter loop. Similarly, primitives
for restarting and stepping in call frames need to be implemented
to enable debugging support.

Squeak already contains various tools originally demonstrated in
Smalltalk-80, including an interactive debugger [13]. Since Squeak’s
tools are designed to work as part of a framework, it is straight-
forward to adopt them, so they can be used for other languages as
well. In addition, new tools, such as application-specific debugging
tools, can quickly be built in Smalltalk [25].

3 IMPLEMENTATION

We have applied our approach in Section 2, so that we can use
Squeak/Smalltalk as an 1DE for Python. The resulting architecture
of our implementation is depicted in Figure 2. On vM-level, there
is an interpreter loop for each language as well as a vM plugin
with a set of primitives which allow Smalltalk to interact with the
Python bytecode loop. In the Smalltalk image, we have introduced
different classes in order to bridge between Python and Smalltalk.
In the following, we explain details of this implementation.

Squeak Makes a Good Python Debugger

Smalltalk Image » Virtual Machine
Object ! Smalltalk
1
2 :
PythonObject - PythonPlugin
: Primitives
1
Python '
:
Debugger E
L :
PythonDebugger !
1

Figure 2: Architecture of the Smalltalk and Python compo-
sition.

3.1 VM-level Implementation

First, we need to build a vMm that is capable of executing both,
Smalltalk and Python code. This can be achieved by composing
a Smalltalk interpreter with a Python interpreter. RSqueak/VM [5]
is a RPython-based implementation of Squeak [16], a Smalltalk im-
plementation derived from Smalltalk-80 and a live programming
environment. PyPy [21] is a Python implementation and the first
RPython vMm.

By simply combining the two interpreters, we can create a virtual
machine with support for both programming languages. However,
to use Squeak/Smalltalk as a live development environment for
Python, we need to be able to run both interpreters concurrently.

Smalltalk implements co-operative multitasking through pro-
cesses [14]. We leverage this and integrate the execution of Python
bytecodes with a Smalltalk-level process, leaving the decision when
to run the next bytecodes up to the Smalltalk scheduler. This al-
lows us to interact with the Squeak/Smalltalk environment as usual
while a Python program is running, as well as to interrupt this pro-
cess to inspect it from Smalltalk.

We create a mixed stack of Python and Smalltalk frames that
is managed like any other Squeak process (cf. Figure 3). The core
responsibility of the vM in our approach is to maintain the sender-
relationship (2)-(1) and (4)-(3) across interpreter loops.

We switch from Squeak to Python by executing a primitive (1)
to enter Python code. This creates a Python frame (2) that executes
in the Python interpreter loop. When this frame returns, the vm
will return from the primitive (1) and transfer control back to its
sender.

While the Python interpreter is running, we maintain a counter
of how many Python bytecodes have been executed to decide when
to transfer control back to Squeak in order to give other processes
a chance to run (e.g., so that the Ul process can handle user in-
put). Since Python frames are not visible to Squeak and thus the
Squeak scheduler cannot switch directly back to Python frames at
a later time, we create an entry point for the scheduler by putting a

PX’17, April 2017, Brussels, Belgium

Squeak Process

Python interpreter loop |
: Python resume frame |

v
Cj Python eval primitive

| Squeak frame [u

[bottom Squeak frame]

Figure 3: Mixed-stack Smalltalk and Python execution.

Squeak frame on the top of the stack. When the Python interpreter
loop switches back to Squeak, the top Python frame (3) creates an
artificial suspended Squeak “resume” frame (4). When the Squeak
scheduler resumes this artificial frame later, it immediately returns
control back to the top Python frame (3).

Since interpreters maintain some execution state directly on the
stack, we use Stacklets* which are provided by the RPython stan-
dard library. Stacklets allow us to implement minimal coroutines
for regions of the C stack to switch between the two interpreter
loops. Since this is a feature of the RPython framework and not of
any specific language implementation, the same principle can also
be applied to any other interpreter written in RPython.

Similar to other Smalltalk vms, RSqueak/VM can be extended
with plugins. Not only have we added vm primitives that can be
called from within the Smalltalk environment to control the PyPy
interpreter loop. Since RPython is a subset of Python which com-
piles to C, we were able to build the entire composition in a single
PythonPlugin. The code of the plugin for example also patches the
PyPy bytecode loop as well as the class which represents Python
frames internally before the actual translation begins. After trans-
lating this new virtual machine, we can open a Squeak/Smalltalk
image and make it aware that the vm also supports the Python
programming language.

3.2 Bridging between Squeak and PyPy

We start by providing a class PythonObject. This class is special,
because the vm will automatically expose objects of the Python ob-
ject space as instances of this new class. In addition, all primitives of
the PythonPlugin are able to automatically convert primitive data
types between Python and Smalltalk. Python strings are therefore
for example converted to Smalltalk ByteStrings and vice-versa.
Now that the vM can inject any kind of Python object into an im-
age, we need be able to interact with these objects. For this reason,
we have added appropriate primitives to the virtual machine. The
most important primitive is the pythonEval primitive which can

4 A lightweight threading mechanism in the spirit of tasklets.

PX’17, April 2017, Brussels, Belgium

evaluate Python expressions and execute Python code. Similar to
Python’s compile builtin, it expects Python source code, a corre-
sponding filename, as well as a string which describes the mode
and can either be “eval” or “exec”. When a Python expression is
evaluated, the primitive returns the result. Otherwise, it will exe-
cute the Python code and return nil, or fail if for example a syntax
error occurred. To clearly separate methods that call primitives
from methods that can be called on PythonObjects, we add a new
class called Python. To its metaclass, we add for example a method
named primEval:filename:mode: which can be used to call the
pythonEval primitive. As an example, we could call the following
to get a new Python object instance:

Python
primEval: 'object()'
filename: '<string>'
mode: 'eval'

We have also modified the method lookup for these kinds of
wrapped Python objects. First, the lookup is done on the Python
side. If it fails, the lookup continues in the PythonObject class
inside the Smalltalk environment. This allows us to implement
and override methods that are necessary for the tool support in
Squeak/Smalltalk while also preserving the original Python behav-
ior. As an example, the following method is used to facilitate that
PythonObjects can understand the message class:

PythonObject>>class
A self __class__

Sending __class__ to self will retrieve the value of the corre-
sponding attribute of the Python object. If a selector name resolves
to a Python callable instead of resolving to an attribute, it is called
directly. This allows to call Python methods and to pass arguments
in. For example, sending append: 'some text' toaPython listob-
ject will call append('some text') on the actual object. Multiple
arguments can be passed using Squeak/Smalltalk’s keyword syntax.
For example, index: 'a'startingAt: 2willcall index('a', 2)
on the Python object— the message name is only considered up to
the first colon, so we can make up readable keywords.

With all of the above, we can start adopting and building tools
in Squeak/Smalltalk which are able to control and modify a Python
program at runtime.

3.3 Adapting Squeak’s Debugger

In order to implement a Smalltalk-style debugger for Python, we
first start with a subclass of Squeak’s Debugger.

We want this new PythonDebugger to display Python frames
on top of the Smalltalk contexts that have triggered the execution
of Python code. The Smalltalk debugger is normally opened on
thisContext which is the current method context. The list of
all contexts displayed by the debugger is generated by traversing
MethodContext objects starting with thisContext and following
the reference to its sender.

Since Python code is being executed in a Smalltalk process, we
need to override the entry point to debug processes and modify
the context on which the debugger is opened. We add Python
frames on top of thisContext, as can be seen in Figure 4 . We
have implemented a primitive that returns the top frame of the

Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

[top PythonContext

\

[PythonContext

top Python frame |

\

Python frame U]

|

[bottom PythonContext

\ i
| thisContext bottom Python frame |
next MethodContext None

Figure 4: Proxying Python frames for the Smalltalk Debug-
ger.

current execution context in Python. Then, we iterate over all par-
ent frames and generate objects from a new class PythonContext
which is a subclass of MethodContext. These objects are basi-
cally only used to hold a reference to the corresponding Python
frame. This connection between the two stacks is similar to the
implementation of MethodContexts in the Cog vm [18], where
Smalltalk context objects are connected to their C stack frame
counter part. Each PythonContext is linked to its parent simi-
lar to how MethodContexts reference their sender. The sender of
the bottommost PythonContext is then set to thisContext and
finally the debugger is opened on the topmost PythonContext.

By overriding the method the debugger calls to retrieve Smalltalk
code, we can make the debugger display Python code whenever it
encounters a PythonContext. In this case, the method uses the ref-
erenced Python frame to look up the corresponding Python source
file. This is possible, because the Python frame contains the cur-
rent line number (frame.f_lineno), the filename of the Python
code (frame.f_code.co_filename), as well as the first line in the
code (frame.f_code.co_firstlineno). With this information, a
helper method can read the right file and parse out the correspond-
ing Python code which is then displayed in the code editor of the
debugger. To further improve usability, we automatically adjust
indentation, because in Python, indentation is part of the syntax.

Moreover, we have overridden the method in PythonContext
that normally returns a list of temporary Smalltalk variables, so that
it returns “self pyFrame f_locals keys”, namely all keys that
are part of the frame’s local namespace. This causes the debugger
to display the Python locals in the bottom right list.

In total, only six method overrides in PythonDebugger were
necessary to provide basic support for Python.

Lastly, we need to instruct the Smalltalk environment to use the
new debugger. This can be done by making a new PythonToolSet
the default, which Squeak/Smalltalk will then use to look up which
tool to open when an exception occurs.

After a user interrupt, the PythonDebugger may look like shown
in Figure 5. The Python application running is a HelloWorld “Flask”-
based web server. We can now explore the current control flow
starting from the DoIt Smalltalk frame which started the applica-
tion, up to the topmost Python frame including the latest line being
executed at the time of the user interrupt. The list includes frames

Squeak Makes a Good Python Debugger

self.finish_req q! , client_:

(line 318 in lib-py
self.p _req q client_: (line 290 in lib-python/2.7/SocketServer.py)
self._handle_request_noblock() (line 233 in lib-python/2.7/SocketServer.py)
HTTPServer.serve_forever(self) (line 511 in werkzeug/serving.py)

srv.serve_forever() (line 673 in werkzeug/serving.py)

inner() (line 708 in werkzeug/serving.py)

run_sil port, self, i (line 841 in py)

app.run() (line 2 in exec_source.py>)

Python class>>resumeFrame

UndefinedObject>>Dolt
Proceed Restart Into | over | Through || Fulstack || where [| Tally

def _handle_request_noblock(self):
""" Handle one request, without blocking.

.7/SocketServer.py)

1 assume that select.select has returned that the socket is
readable before this function was called, so there should be
no risk of blocking in get_request().

request, client_address = self.get_request()
except socket.error:
return

if self.verify_req q client_:):
try:
self.process_req qi client_:

except:
self.handle_error(request, client_address)
self. _request(request)
else:
self.shutdown_request(request)

self stack top a <socket._socketobject
all inst vars all temp vars object at

superclass selt 0x000000010e948cd0>
methodDict request

format client_address

Figure 5: Interrupting a Python application.

with the Python expression that started the server, Flask’s main
entry point, request handling in Werkzeug (one of Flask’s few de-
pendencies), as well as the “SocketServer” module which is part
of the Python standard library. This immediately gives developers
a lot of information to understand the running application. For
example, Flask is considered to be a lightweight web framework.
Developers can now interactively experience what that means, and
discover that Flask uses a library called “Werkzeug” which in turn
uses “SocketServer” in order to serve requests and in which files
and lines the corresponding functions can be found.

When Python code is being executed which throws a Python-
level exception, the virtual machine informs the image accordingly,
so that the image can arrange to open the PythonDebugger. A
simple example in which a naively-implemented average function
is called with an empty list is depicted in Figure 6. This imple-
mentation cannot handle the case of an empty list, therefore a
ZeroDivision exception is thrown. The PythonDebugger’s title
contains the error description and the topmost frame is presented
to the developer with the corresponding error line. It is possible
to inspect the iterable parameter in order to realize that its size
is zero. The user can now insert a check to ensure a division by
zero cannot happen again and then save the code. The method that
usually hot-swaps Smalltalk methods after saving is overridden, so
that the new version of the Python code is written to disk into its
source file first. Then the vm compiles the new code, replaces the
Python code object of the selected Python frame with the newly
produced one, and resets the frame. The next time the Python inter-
preter continues, it will restart the frame and then the misbehavior
is eliminated. This can be done by clicking the “Proceed” button
which will let the Smalltalk-level Python process continue.

PX’17, April 2017, Brussels, Belgium

3.4 Instrumenting more Squeak tools

Similar to the PythonDebugger, we have adopted other tools that
come with Squeak/Smalltalk. It only took little effort to adopt
Squeak’s interactive Inspector and Explorer tools. Only one
method needed to be overridden to provide a PythonWorkspace
which supports Smalltalk-style doIts, printIts, inspectIts, and
explorelts for Python. Moreover, we have basic Python support
in the SystemBrowser which allows us to create Python classes,
and add Python methods. Finally, it now is possible to rapidly build
custom tools for Python development, such as a tool that allows
to observe the execution of Python bytecodes which would allow
debugging on Python bytecode level. With for example the Vivide
framework [25], one could also build data-flow-based applications
which can consist of Python and Smalltalk code.

4 DISCUSSION

This work is aimed at providing the best of two previously sepa-
rate worlds: the framework approach to cross-language 1DE and
debugger development provided by environments such as Eclipse
or NetBeans, and the live and immediate debugging nature of sys-
tems such as Squeak/Smalltalk. On top of that, to be considered
useful, we seek for an approach that impedes performance of the
integrated languages as little as possible.

4.1 Tool Frameworks and Live Development

As shown, our Python debugger is implemented as a refinement of
the default Squeak debugger. Through the inter-language interface
(cf. Section 3.2), this debugger can adapt the Python runtime state
to the expectations of the Squeak tools. The implementation of
the debugger was straightforward as described in Section 3.3. The
amount of adaptation necessary on both, the vm and the tools
side, was comparatively low. Hence, we think that other languages
can easily provide their own adapters to interface with the Squeak
debugger, allowing for a variety similar to that of Eclipse, NetBeans,
or other 1DEs.

Due to this easiness, we also wrote initial adapters for Squeak’s
code browser, the “workspace” (a tool to evaluate short code snip-
pets), and provided an adapter method for the PythonObject class
to work with Squeak’s object inspector. We are thus able —in a
rudimentary fashion — to write and evaluate Python code and to
interactively explore Python objects in the live system.

Our experience in writing those tools was every bit as enjoy-
able for us as writing Smalltalk tools is— the interactive environ-
ment allowed us to adapt the tools as we went along, implementing
features in the moment we wanted them. These advantages, in-
herent to live development environments in the style of Squeak/
Smalltalk [25], are thus made available to Python developers, allow-
ing them to adapt tools at runtime, without having to restart the
IDE or re-execute a running program to iterate over it. Since the
tools work on the Python objects directly, there was no need for
proxy objects besides PythonContext, and these were only neces-
sary because Python frames are not exposed in the Python language
itself. Notwithstanding, the interaction and library reuse goes be-
yond tools and also works in the other direction, so Python code
can be used for Smalltalk projects.

PX’17, April 2017, Brussels, Belgium

def average(iterable): (line 2 in example.py)
average(list()) (line 1 in eval_source.py)
Python class>>openDebuggerWithPythonFrames:
Python class>>resumeFrame
Python class>>eval:filename:mode:

def average(iterable):
return sum(iterable) / len(iterable)

self

all inst vars
superclass
methodDict

Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

thisContext
stack top

all temp vars
iterable

Figure 6: Debugging a Python exception.

4.2 Performance of Combined Languages

The RPython toolchain makes it simple to combine multiple in-
terpreters, but there is a performance impact in doing so. There
are two reasons, one inherent to RPython, the other due to our
approach.

The first reason is a current limitation of the RPython frame-
work: a very potent call stack optimization (called virtualizables)
that avoids allocation of stack frame objects can only be applied
to at most one interpreter. In our case, this means that while
RSqueak/VM runs at full speed, there is an overhead to each PyPy
method call. Although we have not yet put a focus on performance,
a ballpark measurement of the Richards Benchmark?® shows that
our implementation performs comparable to CPython.

The second reason is that our approach— for the time being —re-
lies on the cooperative scheduling mechanism of Squeak/Smalltalk
processes to concurrently execute code in different interpreter loops.
Currently, each interpreter maintains counters to decide when to
give the other processes a chance to run. At minimum, the user
interface (u1) process of Squeak will get a chance to handle user in-
put, but there may also be other processes running concurrently at
the same or higher priority that get scheduled instead. This means
that even when there is no user input and no other concurrent
computation, there is the overhead of maintaining the counters—
at the moment at each bytecode dispatch in PyPy. This overhead
can be reduced if we switch to counters only for loops and method
calls. As another mitigation strategy, we are considering to allow
convenient deactivation of the U process and only start it when a
Python error needs to be handled or when the Python process is
interrupted by the user with a signal. This might be desirable for a
deployment scenario in any case.

5 RELATED WORK

Related work can be found both, in the domain of debuggers as
well as interpreter composition.

Shttps://www.cl.cam.ac.uk/~mr10/Bench.html

5.1 Debugging and Debuggers

The Smalltalk debugger [13] and debuggers like it have capabili-
ties such as object- and stack-inspection, edit-and-continue, restart,
resume, etc. (see above), and can be extended with new concepts,
for example with test-driven fault navigation [19]. However, more
prevalent debuggers present different sets of capabilities. GDB [24]
and descendant or similar debuggers (LLvM, Xcode, etc.) typically
present a very low-level debugging experience. While providing
rich intercession (for example breaking, hardware breakpoints, in-
terrupt handling) or inspection, these are very close to the machine/
processor and not necessarily to the program. Especially debug-
ging languages that are not very C- or assembler-like requires a lot
of effort for effective inspection. Edit-and-continue in GDB is only
supported in a severely limited fashion under the idea of altering ex-
ecution [24, chapter 17]. Similarly geared towards the machine, the
Microsoft Visual Studio Debugger [17], supports a comparable set
of capabilities, paired with a more user-friendly edit-and-continue
mechanism.

On the other hand, debuggers for higher-lever or dynamic lan-
guages like Python or Ruby provide more direct inspection— often
used in a read-only post-mortem fashion — but also limited stop-
and-resume and seldom edit-and-continue. For JavaScript, certain
tools, such as Chrome DevTools, provide more capable stop-and-
resume and a limited edit-and-continue. However, they are hardly
extendable or scriptable.

Ongoing research based on the Truffle framework investigates
how to leverage a language implementation framework to provide
fast, unified debugging facilities to different language implementa-
tions [22, 26].

5.2 Interpreter Composition and
Embedded Languages
The composition of programming languages and — in extension—

their implementations has been investigated since the late 1960s [8].
More recent research targets advanced just-in-time (J1T) compiler

https://www.cl.cam.ac.uk/~mr10/Bench.html

Squeak Makes a Good Python Debugger

frameworks, such as RPython with Unipycation [2] (composition
of Python/PyPy and Prolog/Pyrolog) or Truffle with Sulong (able to
compose Ruby/JRuby and similar with C/LLVM) [15], among oth-
ers [3]. A composition of Ruby with Smalltalk that executes mixed
stacks as Smalltalk processes is also implemented in MagLev, the
Ruby implementation on the GemStone/S Smalltalk vm [23]. Our
composition approach bears most resemblance with Unipycation.

From a different point of view, interpreter composition is similar
to language embedding, however, research that targets the latter
is typically concerned with the language as being written than
with the runtime environment as being executed. Examples include
Eco [9], a syntax-directed-style editor for language composition, as
well as domain-specific language (DsL) tool environments such as
Helvetia [20] or language workbenches [10]. Our approach, how-
ever, is focused on debugging, both with respect to composition
and tooling; more extensive tooling and editing capabilities are still
under investigation.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to using a Smalltalk en-
vironment for debugging other programming languages. We ap-
plied this approach to the RSqueak/VM and PyPy, so that Squeak/
Smalltalk can be used for Python debugging and direct interaction
between the virtual execution environments. Squeak/Smalltalk can
therefore control the Python interpreter, which enables edit-and-
continue style debugging of Python programs. We demonstrated
that only little effort is required to adapt Squeak’s debugger to al-
ter and control the execution of Python code. Such features are
not available in most other Python implementations, including the
reference CPython implementation. Moreover, we adapted the in-
spection tools in Squeak/Smalltalk to be able to inspect and explore
Python objects. We can now build new tools for Python in Squeak/
Smalltalk more rapidly.

However, a debugger alone does not make an IDE. Our initial
results with the debugger are promising and demand expansion to
other tools as well as languages. We plan to adapt Squeak tools,
such as the system browser, to Python in such a way that Squeak
can act as an IDE for Python applications, but benefiting from the
dynamicity of Squeak’s environment. Moreover, it will be inter-
esting to see how well much larger Python applications can be
debugged and developed using these tools. It is currently possible
to affect Python objects from Squeak/Smalltalk but not vice versa,
which would be also useful. For example, a Squeak/Smalltalk image
could act as a persistable object space or even database similar to
GemStone [7]. The changes required on the Python side are how-
ever still uncertain. To extend our approach to other languages,
we have already started integrating Topaz [11]/Ruby and plan to
integrate other interpreters based on RPython, such as Pyrolog [2]/
Prolog or Pycket [4]/Racket.

Lastly, we plan to evaluate our approach more thoroughly, on
the one hand —regarding the programming experience — with user
studies, on the other hand — regarding performance — with mean-
ingful benchmarks.

PX’17, April 2017, Brussels, Belgium

ACKNOWLEDGMENTS

We would like to thank Carl Friedrich Bolz and the PyPy team
for their help integrating the PyPy interpreter into RSqueak/VM.
We gratefully acknowledge the financial support of HPI’s Research

School® and the Hasso Plattner Design Thinking Research Pro-

gram’

REFERENCES

[1] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. 2007.
RPython: A Step Towards Reconciling Dynamically and Statically Typed OO
Languages. In Proceedings of the 2007 Symposium on Dynamic Languages (DLS
’07). ACM, New York, NY, USA, 53-64. DOI:http://dx.doi.org/10.1145/1297081.
1297091

[2] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. 2013. Unipycation: A Case
Study in Cross-language Tracing. In Proceedings of the 7th ACM Workshop on
Virtual Machines and Intermediate Languages (VMIL ’13). ACM, New York, NY,
USA, 31-40. DOI : http://dx.doi.org/10.1145/2542142.2542146

[3] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. 2015. Approaches to inter-
preter composition. Computer Languages, Systems & Structures 44, Part C (2015),
199-217. DOI:http://dx.doi.org/10.1016/j.c1.2015.03.001 arXiv:1409.0757

[4] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias
Pape, Jeremy G Siek, and Sam Tobin-Hochstadt. 2015. Pycket: A Tracing JIT for
a Functional Language. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2015), Vol. 50. ACM, New York, NY,
USA, 22-34. DOI:http://dx.doi.org/10.1145/2784731.2784740

[5] Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas D. Matsakis, Oscar
Nierstrasz, Lukas Renggli, Armin Rigo, and Toon Verwaest. 2008. Back to the Fu-
ture in One Week — Implementing a Smalltalk VM in PyPy. In Self-Sustaining Sys-
tems. Lecture Notes in Computer Science, Vol. 5146. Springer Berlin Heidelberg,
Berlin, Heidelberg, 123-139. DOI: http://dx.doi.org/10.1007/978-3-540-89275-5_

7

[6] Gilad Bracha. 2012. Debug mode is the only mode. https://gbracha.blogspot.
com/2012/11/debug-mode-is-only-mode.html. (2012). Talk at the 2012 meeting
of the IFPI TC2 Working Group on Language Design.

[7] Paul Butterworth, Allen Otis, and Jacob Stein. 1991. The GemStone Object
Database Management System. Commun. ACM 34, 10 (Oct. 1991), 64-77. DOI:
http://dx.doi.org/10.1145/125223.125254

[8] Thomas E. Cheatham, Jr. 1969. Motivation for Extensible Languages. SIGPLAN
Not. 4, 8 (Aug. 1969), 45-49. DOI:http://dx.doi.org/10.1145/1115858.1115869

[9] Lukas Diekmann and Laurence Tratt. 2014. Eco: A Language Composition
Editor. In Software Language Engineering: 7th International Conference, SLE
2014, Visterds, Sweden, September 15-16, 2014. Proceedings, Benoit Combemale,
David J. Pearce, Olivier Barais, and Jurgen J. Vinju (Eds.). Springer International
Publishing, Cham, 82-101. DOI :http://dx.doi.org/10.1007/978-3-319-11245-9_5

[10] Sebastian Erdweg, Tijs van der Storm, Markus Voélter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriél D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin
van der Vlist, Guido H. Wachsmuth, and Jimi van der Woning. 2013. The State
of the Art in Language Workbenches. In Software Language Engineering: 6th
International Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013.
Proceedings, Martin Erwig, Richard F. Paige, and Eric Van Wyk (Eds.). Number
8225 in Lecture Notes in Computer Science. Springer International Publishing,
Cham, 197-217. DOI:http://dx.doi.org/10.1007/978-3-319-02654-1_11

[11] Tim Felgentreff. 2013. Topaz Ruby. http://lanyrd.com/2013/wrocloverb/sccygw/,
https://github.com/topazproject/topaz. (March 2013). Invited Talk at the 2013
edition of Wroclove.rb.

[12] Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert Hirschfeld. 2016. How
to Build a High-Performance VM for Squeak/Smalltalk in Your Spare Time: An
Experience Report of Using the RPython Toolchain. In Proceedings of the 11th
Edition of the International Workshop on Smalitalk Technologies (IWST’16). ACM,
New York, NY, USA, Article 21, 10 pages. DOI: http://dx.doi.org/10.1145/2991041.
2991062

[13] Adele Goldberg. 1984. Smalltalk-80: The Interactive Programming Environment.
Addison-Wesley Longman, Boston, MA, USA. The Red Book.

[14] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman, Boston, MA, USA. The Blue Book.

®https://hpi.de/en/research/research-school. html
"https://hpi.de/en/dtrp/

http://dx.doi.org/10.1145/1297081.1297091
http://dx.doi.org/10.1145/1297081.1297091
http://dx.doi.org/10.1145/2542142.2542146
http://dx.doi.org/10.1016/j.cl.2015.03.001
http://arxiv.org/abs/1409.0757
http://dx.doi.org/10.1145/2784731.2784740
http://dx.doi.org/10.1007/978-3-540-89275-5_7
http://dx.doi.org/10.1007/978-3-540-89275-5_7
https://gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html
https://gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html
http://dx.doi.org/10.1145/125223.125254
http://dx.doi.org/10.1145/1115858.1115869
http://dx.doi.org/10.1007/978-3-319-11245-9_5
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://lanyrd.com/2013/wrocloverb/sccygw/
https://github.com/topazproject/topaz
http://dx.doi.org/10.1145/2991041.2991062
http://dx.doi.org/10.1145/2991041.2991062
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

PX’17, April 2017, Brussels, Belgium Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

[15] Matthias Grimmer, Chris Seaton, Thomas Wiirthinger, and Hanspeter Mossen-
bock. 2015. Dynamically Composing Languages in a Modular Way: Sup-
porting C Extensions for Dynamic Languages. In Proceedings of the 14th In-
ternational Conference on Modularity. ACM, New York, NY, USA, 1-13. DOI:
http://dx.doi.org/10.1145/2724525.2728790

[16] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself.
SIGPLAN Not. 32, 10 (Oct. 1997), 318-326. DOI:http://dx.doi.org/10.1145/263700.
263754

[17] Microsoft. 2017. Debugging in Visual Studio. (Jan. 2017). https://msdn.microsoft.
com/en-us/library/sc65sadd(d=default,1=en-us,v=vs.140).aspx

[18] Eliot Miranda. 2011. The Cog Smalltalk Virtual Machine: Writing a JIT in a High-
level Dynamic Language. In 5th Workshop on Virtual Machines and Intermediate
Languages (VMIL).

[19] Michael Perscheid, Michael Haupt, Robert Hirschfeld, and Hidehiko Masuhara.
2012. Test-driven fault navigation for debugging reproducible failures. Infor-
mation and Media Technologies 7, 4 (2012), 1377-1400. DOI : http://dx.doi.org/10.
11185/imt.7.1377

[20] Lukas Renggli, Tudor Girba, and Oscar Nierstrasz. 2010. Embedding Languages
without Breaking Tools. In ECOOP 2010 — Object-Oriented Programming: 24th
European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings, Theo
D’Hondt (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 380-404. DOI:
http://dx.doi.org/10.1007/978-3-642-14107-2_19

[21] Armin Rigo and Samuele Pedroni. 2006. PyPy’s approach to virtual machine
construction. In Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications (OOPSLA ’06). ACM,
New York, NY, USA, 944-953. DOI :http://dx.doi.org/10.1145/1176617.1176753

[22] Chris Seaton, Michael L. Van De Vanter, and Michael Haupt. 2014. Debug-
ging at Full Speed. In Proceedings of the Workshop on Dynamic Languages and
Applications (Dyla’14). ACM, New York, NY, USA, Article 2, 13 pages. DOI:
http://dx.doi.org/10.1145/2617548.2617550

[23] Matthias Springer. 2016. Inter-language Collaboration in an Object-oriented
Virtual Machine. arXiv preprint (2016). arXiv:1606.03644

[24] Richard M. Stallman, Roland Pesch, and Stan Shebs. 2011. Debugging with GDB:
The GNU Source-Level Debugger, V 7.3.1(10th ed.). GNU Press, Boston, MA, USA.

[25] Marcel Taeumel, Bastian Steinert, and Robert Hirschfeld. 2012. The VIVIDE
programming environment: connecting run-time information with program-
mers’ system knowledge. In Proceedings of the ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software (On-
ward! 2012). ACM, New York, NY, USA, 117-126. DOI:http://dx.doi.org/10.1145/
2384592.2384604

[26] Michael L. Van De Vanter. 2015. Building Debuggers and Other Tools: We Can
"Have It All". In Proceedings of the 10th Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and Systems (ICOOOLPS
’15). ACM, New York, NY, USA, Article 2, 3 pages. DOI: http://dx.doi.org/10.1145/
2843915.2843917

[27] Bret Victor. 2012. Stop drawing dead fish. (May 2012). http://san-francisco.
siggraph.org/stop-drawing-dead-fish/ Talk to the San Fransicso ACM SIG-
GRAPH.

http://dx.doi.org/10.1145/2724525.2728790
http://dx.doi.org/10.1145/263700.263754
http://dx.doi.org/10.1145/263700.263754
https://msdn.microsoft.com/en-us/library/sc65sadd(d=default,l=en-us,v=vs.140).aspx
https://msdn.microsoft.com/en-us/library/sc65sadd(d=default,l=en-us,v=vs.140).aspx
http://dx.doi.org/10.11185/imt.7.1377
http://dx.doi.org/10.11185/imt.7.1377
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://dx.doi.org/10.1145/1176617.1176753
http://dx.doi.org/10.1145/2617548.2617550
http://arxiv.org/abs/1606.03644
http://dx.doi.org/10.1145/2384592.2384604
http://dx.doi.org/10.1145/2384592.2384604
http://dx.doi.org/10.1145/2843915.2843917
http://dx.doi.org/10.1145/2843915.2843917
http://san-francisco.siggraph.org/stop-drawing-dead-fish/
http://san-francisco.siggraph.org/stop-drawing-dead-fish/

	Abstract
	1 Background and Motivation
	2 Approach
	3 Implementation
	3.1 VM-level Implementation
	3.2 Bridging between Squeak and PyPy
	3.3 Adapting Squeak's Debugger
	3.4 Instrumenting more Squeak tools

	4 Discussion
	4.1 Tool Frameworks and Live Development
	4.2 Performance of Combined Languages

	5 Related Work
	5.1 Debugging and Debuggers
	5.2 Interpreter Composition and Embedded Languages

	6 Conclusions and Future Work
	Acknowledgments
	References

